Abstract:
A motor drive controller includes: an advance-angle reference voltage generator that generates an advance-angle reference voltage; a back electromotive voltage comparator that generates phase signals of phases at a cross timing of the advance-angle reference voltage and back electromotive voltages of phases of a motor; and a controller that operates to perform a process including: detecting a rotation speed of the motor based on the phase signals of the phases; increasing the advance-angle reference voltage when the rotation speed moves from a high speed to a low speed; and decreasing the advance-angle reference voltage when the rotation speed moves from a low speed to a high speed.
Abstract:
A method for controlling an electric motor of a vehicle pump used to deliver a medium. According to the method, a period required for at least one partial revolution of a rotor of the electric motor is determined. The fluctuations during the period can represent a measurement of the true running of the electric motor. The speed of the electric motor can be altered depending on the deviation of the period from a comparative value. As a result, the true running of the electric motor can be guaranteed once again.
Abstract:
Provided is an inverter apparatus capable of preventing occurrence of overcurrent in an AC motor and stably controlling driving of the AC motor. The inverter apparatus controlling the AC motor included in an electric compressor includes a shunt resistor for detecting current flowing in the AC motor, and a limit value control unit controlling a current limit value for a detected current detected at the shunt resistor. The limit value control unit determines whether the number of times the detected current becomes equal to or more than the first threshold within a first predetermined time is equal to or more than a first number of times. The limit value control unit decreases the current limit value when the number of times the detected current becomes equal to or more than the first threshold within the first predetermined time is equal to or more than the first number of times.
Abstract:
A driver device for driving a DC motor using PWM modulated drive signals includes comparator circuits for producing digitalized Back-EMF signals having first and second values as a function of the Back-EMF signals being above or below a respective threshold, and an inverter for driving the PWM modulated drive signals in a phased relationship with the digitalized Back-EMF signals. The driver device also includes controller circuits configured for controlling the respective threshold by minimizing the error between a time measured between two consecutive opposed edges of the digitalized Back-EMF signal and half a time measured between two consecutive homologous edges of the digitalized Back-EMF signal.
Abstract:
An amount of a motor drive current is controlled to an appropriate value. Two coils are provided, and a rotor is rotated by the coils by setting different phases for the supplied currents to the two coils. During a phase where one of the coils is in a high-impedance state, an induced voltage generated in the coil is detected. According to the state of the induced voltage, an output control circuit controls the amounts of the motor drive currents supplied to the two coils.
Abstract:
A motor drive system includes a motor, a motor control device, and a sensor that detects torque or acceleration of the motor. The motor control device includes an estimating unit configured to estimate at least one of speed and position of the motor, and a current control unit configured to control current to be supplied to the motor based upon an estimation result by the estimating unit. The estimating unit includes first and second estimating units, and derives an estimated value based upon estimation results by the first and second estimating units. The first estimating unit estimates based upon a detection signal detected by the sensor and a high-frequency component superimposed on an output current to the motor. The second estimating unit estimates from an estimation result of induced voltage of the motor.
Abstract:
A data storage device is disclosed comprising a disk, a spindle motor configured to rotate the disk, wherein the spindle motor comprises a plurality of windings, and a head actuated over the disk. The windings are commutated based on a commutation sequence while applying a periodic driving voltage to each winding, wherein the periodic driving voltage comprises an operating amplitude during normal operation. When a supply voltage falls below a threshold, the spindle motor is configured into a power generator by at least adjusting a phase of the periodic driving voltage by a phase offset and adjusting the amplitude of the periodic driving voltage based on the phase offset.
Abstract:
A method of diagnosing DC fan motor performance is provided in which normal operation of the motor is periodically and temporarily suspended in order to verify that the motor is operating within an acceptable performance range. When normal fan motor operation is suspended, the back EMF of the motor is used to determine (i) whether the motor is seized and/or (ii) whether the rate of deceleration after interrupting power to the motor is indicative of a failing motor.
Abstract:
A method for determining the position of an at least two-phase, in particular three-phase bmshless electric drive comprising at least two phase windings, each of which has a first and a second terminal, a second terminal of a first phase winding being electrically connected to the first terminal of a second phase winding at a common connecting terminal. In order to be able to reliably determine the position of the electric drive even at low speeds, a voltage pulse is applied between the first terminal of the first phase winding and the second terminal of the second phase winding, the resulting voltage at the connecting terminal or at a third phase winding connected thereto is detected and the voltage ratio between the first phase winding and the second phase winding is determined therefrom, and the ratio between the variable inductances is determined from said voltage ratio.
Abstract:
An analog-switch circuit (1) having: a resistor (R1); a resistor (R2); a CMOS analog switch (S1) in which a first end is connected to an input end (Vin) via the resistor (R1), and a second end is connected to an output end (Vout); and a CMOS analog switch (S2), in which a first end is connected to the first end of the analog switch (S1), and a second end is connected to a ground end via the resistor (R2). The CMOS analog switch (S2) is turned on or off in antiphase to the analog switch (S1).