Abstract:
An apparatus adaptable for use with an analog-digital conversion device for effecting communications between an analog device and a digital device, the analog-digital conversion device converting incoming analog signals received from the analog device to incoming digital signals. The apparatus has a digital signal processing circuit for decimating the incoming digital signals and providing a decimated incoming digital signal to the digital device.The digital signal processing circuit is comprised of a plurality of modules which are configured so that a specified set of the plurality of modules effects a specified number of iterations of decimation. The modules are further designed so that additional modules may be added to the specified set of modules to increase the iterations of decimation.
Abstract:
A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.
Abstract:
An apparatus adaptable for use with an analog-digital-analog conversion device for effecting communications between an analog device and a digital device, the analog-digital-analog conversion device converting incoming analog signals received from the analog device to incoming digital signals, and for converting interpolated outgoing digital signals to outgoing analog signals. The apparatus has a digital signal processing circuit for decimating the incoming digital signals and providing a decimated incoming digital signal to the digital device, and for interpolating outgoing digital signals received from the digital device and providing an interpolated outgoing digital signal to the analog-digital-analog device.The digital signal processing circuit is comprised of a plurality of modules which are configured so that a specified set of the plurality of modules effects a specified number of iterations of decimation and a specified number of iterations of interpolation. Certain of the specified set of modules participate in both the decimation and interpolation operations. The modules are further designed so that additional modules may be added to the specified set of modules to increase the iterations of decimation or to increase the iterations of interpolation, or to increase the iterations of both decimation and interpolation.
Abstract:
The same analog signal is inputted to an 8-bit AD converter and to a 4-bit AD converter to obtain an 8-bit digital data and a 4-bit digital data for the same sample value of the analog signal. Values of the 8-bit digital data and 4-bit digital data are compared with each other. The 8-bit digital data is outputted as a digital signal for the sample value of the analog signal when a difference between these values is not greater than one-half the quantity that corresponds to the least significant bit of the 4-bit digital data, and the 4-bit digital data is outputted as a digital signal for the sample value of the analog signal in other cases. There is realized AD conversion which operates apparently at high speeds maintaining high accuracy.
Abstract:
The object of the present invention is the improvement of logarithmic amplifiers and/or converters and the applications of such devices in particular to photometric analyzer apparatuses.These amplifiers are characterized by the fact that they are linear with an amplification gain programmable by the .mu.P computer and that they may be preceded optionally by a reference voltage system.Application to the measurement of light transmitted by samples.
Abstract:
A method and apparatus for reducing spurious output noise in digital frequency synthesizers employing sine amplitude converters connected to Digital-to-Analog converters to generate analog waveforms from sine amplitude data. Random or pseudorandom numbers having a value equal to or less than plus or minus one-half of a minimum quantization step or value change for the sine amplitude data are generated and added to the sine amplitude data with the resulting sum being transferred to the Digital-to-Analog converter. In one embodiment, a summation circuit is connected between an output of the sine function converter and an input of the Digital-to-Analog converter and also has a second input connected to a pseudorandom number generator which provides Pseudorandom numbers varying in value over a range of .+-.1/2.sup.n+1 times a least significant step value, or bit for base 2, of a corresponding Digital-to-Analog input data value where n is greater than or equal to 1.
Abstract:
A digitizer system includes M digitizers, each producing a separate waveform data sequence representing a succession of instantaneous magnitudes of an input signal at sample times determined by a periodic clock signal. Transmission of the clock signal to each digitizer is delayed by a corresponding adjustable delay time so as to control the relative sample timing of the digitizers. To adjust sample timing, a sine wave signal is applied as the input signal to each digitizer such that the M digitizers produce M separate waveform data sequences in response to said input signal and the M data sequences are interleaved and windowed to form a single waveform data sequence. A first sequence of complex numbers representing a discrete Fourier transform of the single waveform data sequence is generated and then a second sequence of M complex numbers is formed from elements corresponding to relative magnitude peaks of the first sequence. A third sequence of M complex numbers is generated representing an inverse discrete Fourier transform of the second sequence and the phase angle of each number of the third sequence is computed and divided by the input signal frequency to produce a set of M numbers, each representing a timing error for a corresponding one of the M digitizers. The time delay corresponding to each digitizer is then adjusted by the amount of the timing error.
Abstract:
Computer apparatus comprising a central computer having a data input port, means connecting two or more remote chord keyboards to the input port, and means for identifying with each respective keyboard alpha-numeric and like character data and command instructions generated by operation thereof and received through the input port; the central computer is programmed to process and combine the character data from the keyboards in accordance with the commands and to output resultant information for display in common by video and/or audio display means. In a preferred embodiment key-operated switches incorporated in each remote chord keyboard are connected in an R-2R resistive ladder network so that operation thereof either singly or in combinations of two to all will produce ratiometric changes in an analog output voltage that uniquely varies as the binary weighting of the operated switch or switch combination. An analog-to-digital converter is connected to the input port of the computer to translate the signals generated at the remote chord keyboard to a form that can be handled by the central processing unit of the central computer.
Abstract:
An integrated circuit device for an electronic equipment having an internal bus, the integrated circuit device comprising a digital-to-analog converter for converting a serial digital control signal to a corresponding analog control signal, a plurality of circuits subject to control in response to the analog control signal for performing specific functions, a switch circuit for selecting any one of the plurality of circuits, a switch control circuit for controlling the switch circuit to select any one of the plurality of circuits according to a received selection signal, an analog-to-digital converter for converting an output signal from the switch circuit into a corresponding digital signal, and a bus interface circuit for sending the serial digital control signal from the internal bus to the digital-to-analog converter and for sending the selection signal to the switch control circuit.
Abstract:
A supervisory circuit for use in an integrated circuit to supervise the program execution of a processing unit is disclosed. The processing unit generates a restart signal at a particular duty cycle under proper program execution conditions and at an undesirable duty cycle under improper program execution conditions. The supervising circuit includes a capacitive or like circuit element for converting the restart signal into a signal representative of the duty cycle thereof and compares the generated signal to a reference window comprising upper and lower reference values. Should the generated signal exceed the boundaries of the window reference, a corresponding control signal is generated to change the circuit conditions and generate a reset signal to the processing unit to govern the program execution thereof to a prespecified point from which point program execution may continue upon removal of the reset signal.