Abstract:
Structures for field emission displays and methods of making and using such structures are provided. In one implementation, a cathode plate of a field emission display includes a cathode substrate of the field emission display and a plurality of emitter lines formed on the cathode substrate. In another implementation, an anode plate of a field emission display includes a transparent piece of the field emission display and a plurality of phosphor lines formed on the transparent piece. The plurality of phosphor lines are to be aligned with and receive electrons from a plurality of emitter lines of a cathode substrate of the field emission display.
Abstract:
The present invention relates to a field emission device including a silicon substrate having an emitter electrode formed in a surface portion thereof, an insulating layer formed on the emitter electrode and having a nano hole to expose the emitter electrode. An emitter is formed on the emitter electrode exposed through the nano hole. A gate electrode is formed on the insulating layer. The present invention can reduce the driving voltage and thus lower the power consumption.
Abstract:
A field emission display (FED) includes first and second substrates opposing one another with a predetermined gap therebetween. The FED also includes cathode electrodes formed in a stripe pattern on the first substrate, and a plurality of electron emission sources formed on the cathode electrodes; gate electrodes formed on the first substrate in a state insulated from the cathode electrodes and the electron emission sources by an insulating layer; and anode electrodes formed on a surface of the second substrate opposing the first substrate, and including phosphor layers formed thereon. A pair of fixing rails are formed along two opposing edges of one of the first and second substrates, the fixing rails having undergone a blackening process; and a metal grid provided between the first and second substrates and welded to an upper surface of the fixing rails.
Abstract:
The field emission type cathode (K) is made as the multilayered structure (33) in which the conductive platelike corpuscles 30 are piled, whereby an edge portion of end surface of a field emission type cathode K for emitting electrons is formed sharply and easily.
Abstract:
A field-emission cathode having an emitter provided with a substrate, an emitter electrode layer, an insulating layer, a gate electrode layer, the layers being formed on the substrate in this order, needlelike projections for electron emission provided on the emitter electrode layer in a gate opening from which the insulating layer and the gate electrode layer are removed and each grown from one point in a given direction, and different projections for electron emission formed on all or part of the projections. The projections of the emitter are made of metallic particles, and thereby the manufacturing cost is lowered.
Abstract:
In a picture tube device with a field-emission cold cathode, including a plurality of electron-emitting cathodes, and a lead electrode provided with a plurality of apertures surrounding the plurality of electron-emitting cathodes respectively, a surface of the lead electrode has a curved shape that is convex in an electron emission direction. This makes it possible to obtain a high-resolution and high-performance picture tube device that has an excellent focus performance over an entire beam current.
Abstract:
An electrode in a plasma display panel and a fabrication process thereof that is capable of reducing a line width of the electrode without increasing a resistance component of the electrode. In the method, a bus electrode is provided by laminating a metal film on a certain substrate and then patterning it. A transparent electrode is provided on the substrate in a shape of surrounding the bus electrode. Accordingly, the electrode is provided by the metal film such that a limit for a selection in a width or thickness of the electrode, so that a line width of the electrode can be reduced to improve the visible light transmissivity and the electrode is formed into a large thickness instead of making a minute electrode width to lower the resistance component, thereby reducing a power consumption of the PDP.
Abstract:
An array of carbon-based emitters is provided having more uniform electron emission over the area of the array. This is made possible by a resistive layer that is present below each of the emission tips. Both organic and inorganic resistive layers may be grown under the emitting carbon-based material. A conductive backing layer is in contact with the resistive layer. Methods for making the improved array are provided. The methods include growth of carbon-based tips in a mold, removal of various films or portions of films by etching, and other techniques.
Abstract:
An apparatus for stabilizing the threshold voltage in an active matrix field emission device. The apparatus includes the formation of radiation-blocking elements between a cathodoluminescent display screen of the FED and semiconductor junctions formed on a baseplate of the FED.
Abstract:
An electron source includes a planar emission region for generating an electron emission, and a focusing structure for focusing the electron emission into an electron beam.