Abstract:
A display in which images can be selectively presented to a viewer, is formed by providing a transparent substrate; forming a transparent, electrically conductive coating over the transparent substrate; forming a light modulating layer including liquid crystal material in a polymer binder over the transparent, electrically conductive layer; forming by directly depositing conductive material in an image wise pattern over the light modulating layer to provide viewable and conductive images, the light modulating layer being effective in a first condition to prevent the viewing of the viewable and conductive images and in a second condition to permit the viewing of the viewable and conductive images. Electrical connection is made so that an electrical field can be applied across selected ones of such viewable and conductive images and the transparent, electrically conductive layer to cause the light modulating layer underlying the selected ones of the viewable and conductive images to change from the first condition to the second condition so as to present such viewable and conductive images for viewing to the viewer.
Abstract:
Manufacturing steps for a cathode ray tube or a glass bulb for the cathode ray tube are controlled in such a manner that a two-dimensional matrix code 3 comprised of a plurality of dots is marked by laser in an outer side surface of a glass bulb 1, 5, the two-dimensional matrix code 3 containing the information which can identify individually glass bulbs, and the manufacturing steps are conducted by using a computer and the particulars specified by the serial information.
Abstract:
In a discharge lamp sealing apparatus 30, luminescent substances are charged into an arc tube 11 through an opening 13b thereof, and an electrode member 15 is then inserted into the arc tube 11 through the opening 13b. A lower end of the arc tube 11 is supported by a support jig 57 in a state that a glass ring 16c is placed around the circumference of the opening 13b. The arc tube 11 is set in an air-tight condition by a feeding conduit 51 and inserted into a heating unit 40. The heating unit 40 fuses the glass ring 16c with heat of an infrared lamp and thereby seals the opening 13b. During the sealing process, one end of the arc tube 11 is supported by the support jig 57. The support jig 57 is mainly made of a material having a greater thermal conductivity than that of the material of the arc tube 11, for example, a metal material like Al or Cu. This arrangement enables heat to be readily conducted from the arc tube 11 to the support jig 57 and accordingly prevents a temperature rise in the arc tube 11. This prevents the luminescent substances from being vaporized and released from the arc tube 11.
Abstract:
Fabrication of an electron-emitting device entails providing an electron-emitting structure in which multiple sets of electron-emissive elements (24) overlying an emitter electrode (12) are arranged in a line extending generally in a specified direction. Each of a group of control electrodes (28) in the electron-emitting structure contain (a) a main control portion (30) penetrated by a control opening (34) that laterally circumscribes one of the sets of electron-emissive elements and (b) a gate portion (32) that extends across the control opening and has gate openings (36) through which the electron-emissive elements are exposed. Actinic material (38P) is provided over the control electrodes and processed to form a base focusing structure (38) penetrated by multiple focus openings (40) such that each focus opening is centered on a corresponding one of the control openings in the specified direction.
Abstract:
A gas discharge display device comprising a front side substrate having a plurality of first electrodes and a back side substrate having a plurality of second electrodes, wherein at least said first electrodes or second electrodes are formed by wet etching using a resist made of an inorganic material, is excellent in the ability to suppress the breakage of wiring in electrodes.
Abstract:
This invention consists of an improved design and assembly process the for manufacture of a single ended quartz (SEQ) lamp having three-part leads and a prefocus base for projection applications. This invention consists of a much simpler two-pin prefocus ceramic base SEQ lamp design that is made with fewer parts and is much easier and faster to assemble to enable much reduced labor and cost. Also, the ceramic base is smaller and exposes more of the quartz lamp seal to the surroundings to enable more effective cooling during lamp operation to prevent lamp failures from overheated seals. Also, the ceramic base is designed for quick assembly with the coil correctly focused to the base.
Abstract:
In an electron emitting device, an electron source and an image forming apparatus making use of it, and producing methods of them, an organic film is present on a pair of conductive films forming the electron emitting device. This organic film is placed in an area on the conductive films. This prevents occurrence of leak paths between the conductive films, which used to occur because of change of the organic film on the substrate into a conductor where the organic film existed on the substrate outside the area of the conductive films, and prevents decrease in electron emission efficiency.
Abstract:
A field electron emission cathode is manufactured by depositing on an insulating substrate 300, by low resolution means, a sequence of a first conducting layer 301, a field emitting layer 302 and a second conducting layer 303 to form at least one cathode electrode. There is then deposited on the cathode electrode by low resolution means, a sequence of an insulating layer 304 and a third conducting layer 305, to form at least one gate electrode. The structure thus formed is then coated with a photoresist layer 306. The photoresist layer 306 is then exposed by high resolution means to form at least one group of emitting cells, the or each such group being located in an area of overlap between a cathode electrode and gate electrode. To complete the cells, the conducting and insulating layers 305, 304, 303 are etched sequentially to expose the field emitting layer 302 in the cells, and remaining areas of the photoresist layer 306 are removed. Thus, field emitting materials and devices can be manufactured using relatively low cost techniques.
Abstract:
An enhanced Spindt-tip field emitter tip and a method for producing the enhanced Spindt-tip field emitter. A thin-film resistive heating element is positioned below the field emitter tip to allow for resistive heating of the tip in order to sharpen the tip and to remove adsorbed contaminants from the surface of the tip. Metal layers of the enhanced field emission device are separated by relatively thick dielectric bilayers, with the metal layers having increased thickness in the proximity of a cylindrical well in which the field emitter tip is deposited. Dielectric material is pulled back from the cylindrical aperture into which the field emitter tip is deposited in order to decrease buildup of conductive contaminants and the possibility of short circuits between metallic layers.
Abstract:
A touch screen display, includes an electroluminescent display; a touch screen, and a transparent sheet that functions as an element of both the electroluminescent display and the touch screen.