Abstract:
A method of soldering used in fabricating an electronic circuit device employs an organic material supplied to at least one of the connecting members to be bonded. The connecting members are positioned in an oxidizing atmosphere, and heated in a nonoxidizing atmosphere to remove oxide and/or contamination layers present on the surface of presoldered portions or metallized bonding portions. By this method, fluxless soldering is performed, positional shifts are reduced, and high reliability of the soldering connections with reduction in residues after reflow are obtained.
Abstract:
In order to remove oxide film and contamination film on members to be bonded by soldering and solder material therefor corresponding to variation of thickness thereof by sputter-etching in a fluxless bonding method and apparatus therefor, substance emitted from the solder material under sputter-etching using atom or ion is detected and determined whether it is from the solder material or from the oxide film thereon. The sputter-etching is controlled on the basis of the determination to remove the oxide film. Then, the members are aligned in oxidizing atmosphere and soldered in non-oxidizing atmosphere.
Abstract:
A gas discharge display device comprising a front side substrate having a plurality of first electrodes and a back side substrate having a plurality of second electrodes, wherein at least said first electrodes or second electrodes are formed by wet etching using a resist made of an inorganic material, is excellent in the ability to suppress the breakage of wiring in electrodes.
Abstract:
A gas discharge type display apparatus includes a front substrate having a plurality of first electrodes and a back substrate having a plurality of second electrodes and at least ones of the first and second electrodes are made of the photosensitive material containing silver exposed by using the laser thereby, making a mask unnecessary.
Abstract:
A gas discharge display device having a first substrate, a plurality of first electrodes having a substantially rectangular form being arranged on the first substrate, a plurality of second electrodes, respective ones of the plurality of second electrodes being formed on respective ones of the plurality of first electrodes, and each of the plurality of second electrodes having an extension extending beyond an end of a respective one of the plurality of first electrodes on which respective ones of the plurality of second electrodes are formed and in an oblique direction therefrom. The extension of the plurality of second electrodes extend beyond opposite ends of alternate ones of the plurality of first electrodes.
Abstract:
The present invention is a process for manufacturing an electronic circuit device by applying a solder material to electronic parts or electrodes on a printed circuit board; the process comprising the steps of removing an initial surface oxide film and an organic contaminant film from the surfaces of the solder material and electrode, covering the solder material and an area to which solder is to be applied which is comprised of the electrode, with a liquid vaporizing up after the bonding is completed in the step of heat-melting the solder material, to thereby prevent reoxidation of the joining area surface, and heat-melting the solder material, to carry out solder bonding without using any flux.
Abstract:
A method of making a gas discharge display panel including the steps of providing a first substrate having a plurality of first electrodes and a plurality of second electrodes, laser processing said first electrodes into a rectangular form, forming the second electrodes on the first electrodes and providing a second substrate having a plurality of third electrodes and being opposed to the first substrate.
Abstract:
A gas discharge display device comprising a front side substrate having a plurality of first electrodes and a back side substrate having a plurality of second electrodes, wherein at least said first electrodes or second electrodes are formed by wet etching using a resist made of an inorganic material, is excellent in the ability to suppress the breakage of wiring in electrodes.
Abstract:
A method of making a gas discharge display panel and a gas discharge display device using laser processing so that the manufacturing time to form wiring on a substrate thereof is significantly reduced. In order to achieve this, the gas discharge display panel is provided with a first substrate having a plurality of first electrodes and a plurality of second electrodes, and the first electrodes are laser processed to have a substantially rectangular shape. The second electrodes are formed on the first electrodes, and a second substrate having a plurality of third electrodes which is opposed to the first substrate is provided.
Abstract:
A gas discharge display device comprising a front side substrate having a plurality of first electrodes and a back side substrate having a plurality of second electrodes, wherein at least said first electrodes or second electrodes are formed by wet etching using a resist made of an inorganic material, is excellent in the ability to suppress the breakage of wiring in electrodes.