摘要:
A temperature-compensated quartz crystal oscillator includes a substrate having a circuit pattern disposed on a surface thereof and mounting electrodes disposed on a reverse side thereof and electrically connected to the circuit pattern, circuit components mounted on the surface of the substrate and electrically connected to the circuit pattern, and a surface-mounted quartz crystal unit having a hermetically sealed quartz crystal blank, and mounted on the surface of the substrate and electrically connected to the circuit pattern. The crystal unit has a cavity defined in a mounting surface thereof, at least one of the circuit components being housed in the cavity.
摘要:
A crystal oscillation device includes a crystal oscillator including a package with first connecting electrodes provided on a flat bottom surface mounted on a flat, thin circuit board. Circuit components and second connecting electrodes provided in one-to-one correspondence with the first connecting electrodes are mounted on one principal surface of the circuit board. The crystal oscillator is supported by top surfaces of a transistor and a varicap diode that are the highest among the circuit components mounted on the circuit board. The crystal oscillator and the circuit board are electrically connected with solder provided between the first and second connecting electrodes. The solder also attracts the crystal oscillator toward the circuit board.
摘要:
A circuit for producing a reliable duty cycle for a low power oscillator. The circuit produces a square wave signal based on the differences between the oscillating output signal driven by a piezoelectric crystal and a phase shifted output signal. This circuit provides a quick start for a clock signal, generates a reliable fifty percent duty cycle and is better protected from common mode noise. This circuit can also be configured to be programmable to provide for an adjustable duty cycle.
摘要:
An oscillator package with an improved crystal mount. The oscillator package has substrate with a top cavity and a bottom cavity. Vias extend through the substrate between the top and bottom cavities. A semiconductor die is located in the bottom cavity and is covered by a sealant. A crystal is located in the top cavity. The crystal is mounted in the top cavity using a thermosonically deposited gold bump. The gold bump is attached between an electrode pad and a contact pad. The gold bump provides an electrical connection between the crystal and the substrate and supports the crystal. A cover and seal ring are attached to substrate to hermetically seal the top cavity.
摘要:
The present invention relates to a chip quartz oscillator. In an embodiment of a chip quartz oscillator S in accordance with the present invention, a quartz oscillator 2, which has a detection electrode 3 on a surface thereof and a non-detection electrode on the other surface thereof, is fixed on a substrate 1, and each of the electrodes is connected electrically to a terminal 4 or 4null on the substrate 1. While keeping the non-detection electrode in contact with the substrate 1, the quartz oscillator 2 is fixed on the substrate 1, by flexibly bonding the side-wall 2nullnull of the quartz oscillator 2 along its circumference to the surface of the substrate 1 by using the elastic bonding agent 5. Thus, the oscillation surface of the quartz oscillator 2 is supported distributively on the substrate 1 in a surface-contacting and non-adhesive manner.
摘要:
To provide a miniaturized voltage controlled oscillator which can oscillate simultaneously a plurality of frequencies and has high stability of frequency, an excellent low phase noise, small variation per hour, and a wide frequency variable range. A thin film bulk acoustic wave resonator using single crystal ferroelectric material equal to or smaller than 10 nullm in thickness whose direction of polarization is aligned to the direction of thickness is utilized as the piezoelectric member. The voltage controlled oscillator having large changing rate of the oscillation frequency of 0.01%/V or more and an extremely small phase noise is provided by changing the voltage applied to the electrodes.
摘要:
A sheet substrate for use in manufacturing surface-mount crystal oscillators has a plurality of container bodies fabricated thereon. Each of the container bodies is capable of accommodating at least one IC chip, and has a bottom face formed with a plurality of mount terminals and a top face which is capable of forming a crystal unit thereto. On the sheet substrate, each of the container bodies has a conductive path extending from the container body to an adjacent container body and connected to a mount terminal of the adjacent container body, and a chip carrying terminal connected to one end of the conductive path for use in electric connection with the IC chip.
摘要:
A crystal oscillator circuit has capacitors that govern the resonant circuit and are designed such that they can be connected and disconnected, for frequency adjustment. A respective compensation capacitor is connected opposite and in mirror-image form to these capacitors that govern the resonant circuit. This compensation capacitor influences only the dynamic operating point, but has virtually no effect on the oscillation frequency. In consequence, it is not possible to shift the operating point during adjustment of the oscillation frequency, thus ensuring stability of the oscillating system and operation at the desired operating point.
摘要:
This temperature-compensated crystal oscillator includes: a temperature sensor 11; an analog type temperature compensating section 12; a digital type temperature compensating section 13; an adder circuit 14; and a voltage controlled crystal oscillating circuit 3. The analog type temperature compensating section 12 and the digital type temperature compensating section 13 each generate temperature compensation voltages based on an input voltage corresponding to the temperature detected by the temperature sensor 11. Both of these temperature compensation voltages are added to each other by the adder circuit 14 and the resultant added voltage is applied to a voltage control terminal of the voltage-controlled crystal oscillating circuit 3. Thereby, an oscillation frequency of the voltage-controlled crystal oscillating circuit 3 is stabilized, resulting in realization of the temperature compensation of a crystal resonator 4.
摘要:
A system and method for programming a digitally tunable oscillator is provided. A desired output frequency is received. A tuning effect of a set of digital tuning words on a crystal resonant frequency is determined, and valid parameters of an algorithm for translating and tuning the crystal resonant frequency to a value within an error tolerance of the desired frequency, based on the determined tuning effect are calculated. Valid parameters are preferably calculated based on an intermediate tuning value, sorted by ascending divide parameter of the algorithm, and then evaluated in sorted order for ability of a tuning effect to null frequency error to within the error tolerance. The valid set of calculated parameters are then programmed into a nonvolatile memory. The oscillator control parameters may remain unprogrammed until all necessary parameters are defined. Because the device may be programmed in a single step, without intermediate presumption of nominal crystal frequency, the final plate process may be unnecessary. A high accuracy may be obtained by searching through the complete set of available parameters for a set that meets a frequency and tolerance specification. The oscillator is preferably a Cypress CY2037 device alone or in combination with a Micro Analog Systems MAS1175 device.
摘要翻译:提供了一种用于编程数字可调谐振荡器的系统和方法。 接收期望的输出频率。 确定一组数字调谐字对晶体谐振频率的调谐效应,以及基于所确定的调谐效应,将用于将晶体谐振频率转换和调谐到所需频率的误差容限内的值的算法的有效参数 被计算。 优选地,根据算法的上升除法参数对中间调整值进行有效参数的计算,然后按照排序顺序对调谐效应的零频率误差进行误差容限的评估。 然后将有效的计算参数集编程到非易失性存储器中。 振荡器控制参数可能保持未编程,直到定义了所有必要的参数。 因为可以在单个步骤中编程器件,而不会中间推定额定晶体频率,所以最终的板工艺可能是不必要的。 通过搜索满足频率和公差规范的一组的可用参数的完整集合可以获得高精度。 该振荡器优选地是单独的Cypress CY2037器件或与Micro Analog Systems MAS1175器件的组合。