Abstract:
The invention relates to an electrical plug connector (1) for an electrical cable (2), with a strand guide (10) which is provided on the electrical plug connector (1) so as to be able to move, wherein the strand guide (10) or the electrical plug connector (1) has a release means (112, 212) which can be used to separate the strand guide (10) from the electrical plug connector (1). The invention further relates to a manufactured electrical cable with an electrical plug connector (1) according to the invention; and also to an electrical or electronic apparatus or component, with an electrical plug connector (1) according to the invention or a manufactured electrical cable according to the invention.
Abstract:
A modular electrical bus system for a valve manifold has a main communication module with a plurality of modular I/O units each having a plurality of I/O fittings being both electrically and mechanically connectable together via a bridge member connecting adjacent units and the main communication module. At least one of the modular I/O units is also mechanically separable from and maintains communication connection to the main communication module. One or both of the modular IO units and main communication module may have an alpha-numeric display.
Abstract:
A connector arrangement includes a plug nose body; a printed circuit board positioned within a cavity of the plug nose body; and a plug cover that mounts to the plug nose body to enclose the printed circuit board within the cavity. The printed circuit board includes a storage device configured to store information pertaining to the electrical segment of communications media. The plug cover defines a plurality of slotted openings through which the second contacts are exposed. A connector assembly includes a jack module and a media reading interface configured to receive the plug. A patch panel includes multiple jack modules and multiple media reading interfaces.
Abstract:
An intelligent network patch field management system is provided that includes electronic hardware, firmware, mechanical assemblies, cables, and software that provide visible and audible cues for connecting and disconnecting patch cords in an interconnect or cross-connect patching environment. Systems of the present invention also monitor patch cord connections in a network.
Abstract:
An outlet (70, 75, 76, 78, 79) for a Local Area Network (LAN), containing an integrated adapter (21, 25) that converts digital data to and from analog video signal. Such an outlet allows using analog video units in a digital data network (80), eliminating the need for a digital video units or external adapter. The outlet may include a hub (31, 41) that allows connecting both an analog video signal via an adapter, as well as retaining the data network connection, which may be accessed by a network jack (73). The invention may also be applied to a telephone line-based data networking system. In such an environment, the data networking circuitry as well as the analog video adapters are integrated into a telephone outlet, providing for regular telephone service, analog video connectivity, and data networking as well. In such a configuration, the outlet would have a standard telephone jack (71), an analog video jack (72) and at least one data networking jack (73). Outlets according to the invention can be used to retrofit existing LAN and in-building telephone wiring, as well as original equipment in new installation
Abstract:
An adapter includes a mechanical frame, which is configured to be inserted into a four-channel Small Form-Factor Pluggable (SFP) receptacle and to receive inside the frame a single-channel SFP cable connector. First electrical terminals, held by the mechanical frame, are configured to mate with respective first pins of the receptacle. Second electrical terminals, held within the mechanical frame, are configured to mate with respective second pins of the connector. Circuitry couples the first and second electrical terminals so as to enable communication between the connector and one channel of the receptacle while terminating the remaining channels of the receptacle.
Abstract:
A connection-sensing DC plug has an insulative body, a connection portion, two power terminals, a conductive sheet and a retractable pin. The connecting portion is adapted to electronically connect to a target device and has an isolation layer and a ground layer. The conductive sheet is mounted in the insulative body and contacts either the isolation layer or the ground layer. The retractable pin is movably mounted in the insulative housing parallel to the connecting portion, with one end securely engaging the conductive sheet and the other end protruding from the insulative body. When the DC plug is connected to the target device, the retractable pin is pressed and moves inward to bend the conductive sheet, turning the conductive sheet to a floating state and resulting in a trigger signal.
Abstract:
An electrical connector system includes a substrate (1) connected to PHY side and an electrical connector (3) mounted on the substrate (1), a transformer (5) and a common mode filter (7). The electrical connector (3) is used to mate with a cable assembly and so forms a Cable side. The transformer (5) further includes a first wire (51) having two opposite ends electrically connected to the PHY side and a second wire (53) having two opposite ends. The common mode filter (7) has a third wire (73) and a fourth wire (75) physically separated from the second wire (53). The third wire (73) has an end electrically connected to one end of the second wire (53) and an opposite end electrically connected to the Cable side. The fourth wire (75) has an end electrically connected to the opposite end of the second wire (53) and an opposite end electrically connected to the Cable side.
Abstract:
An apparatus and method for crosstalk compensation in a jack of a modular communications connector includes a flexible printed circuit board connected to jack contacts and to connections to a network cable. The flexible printed circuit board includes conductive traces arranged as one or more couplings to provide crosstalk compensation.
Abstract:
A connector (10) in the field of telecommunications has contacts (12) with which wires are connectable inside the connector (10), and at least three wire openings (16, 116), each opening (16, 116) being adapted to accommodate at least two wires and exposed on an outside of the connector (10) distal from the contacts, the wire openings (16, 116) being exposed in at least three different directions.