摘要:
A cryoprotectant for use with a treatment device for improved removal of heat from subcutaneous lipid-rich cells of a subject having skin is provided. The cryoprotectant is a non-freezing liquid, gel, or paste for allowing pre-cooling of the treatment device below 0° C. while preventing the formation of ice thereon. The cryoprotectant may also prevent freezing of the treatment device to the skin or ice from forming from moisture seeping out from the skin. The cryoprotectant may further be hygroscopic, thermally conductive, and biocompatible.
摘要:
Systems for removing heat from a subject's subcutaneous lipid-rich regions, such as tissue, organs, cells, and so forth, are described herein. In various embodiments, the system includes a treatment device and a controller for controlling a treatment process. The controller is configured to detect and compensate for an interruption in the treatment process.
摘要:
A treatment device for removing heat from subcutaneous lipid-rich cells of a subject having an actuator that provides mechanical energy to the tissue. The mechanical energy provided may include a vibratory component that can range between low and ultra-high frequencies, and such energy may include various combinations of two or more frequencies tailored to produce the desired effect on the subcutaneous tissue. Disruption of adipose tissue cooled by an external treatment device may be enhanced by applying mechanical energy to cooled tissue. Furthermore, such mechanical energy may impart a vibratory effect, a massage effect, a pulsatile effect, or combinations thereof on the tissue.
摘要:
Methods are provided herein for affecting a region of a subject's body, comprising exposing the region to a cooling element under conditions effective to cool subcutaneous adipose tissue in said region; and increasing the blood flow rate to the cooled tissue by exposing the tissue to an energy source. Methods are also provided for treating subcutaneous adipose tissue in a region of a subject's body, comprising exposing said region to a cooling element under conditions effective to cool said tissue; and exposing the tissue to an energy source to increase the blood flow rate to the cooled tissue, thereby stimulating reperfusion in, and/or causing an ischemia-reperfusion injury to, the cooled tissue.
摘要:
A cooling device for removing heat from subcutaneous lipid-rich cells of a subject having skin is provided. The cooling device includes a support having a first portion and a second portion. A first cooling element having a first heat exchanging surface is located at the first portion of the support. A second cooling element having a second heat exchanging surface is located at the second portion of the support. At least one of the first and second cooling elements is movable along the support and is configured to rotate for adjusting an angle between the first and second heat exchanging surfaces.
摘要:
Methods are provided herein for affecting a region of a subject's body, comprising exposing the region to a cooling element under conditions effective to cool subcutaneous adipose tissue in said region; and increasing the blood flow rate to the cooled tissue by exposing the tissue to an energy source. Methods are also provided for treating subcutaneous adipose tissue in a region of a subject's body, comprising exposing said region to a cooling element under conditions effective to cool said tissue; and exposing the tissue to an energy source to increase the blood flow rate to the cooled tissue, thereby stimulating reperfusion in, and/or causing an ischemia-reperfusion injury to, the cooled tissue.
摘要:
A method in accordance with a particular embodiment of the present invention includes increasing a concentration of a modified or unmodified saccharide within a subject's skin, applying an applicator to the subject's skin, and cooling the subject's skin via a heat-transfer surface of the applicator. The saccharide within the subject's skin can enhance a resistance of at least some cells within the subject's skin to damage associated with the cooling. A corresponding system includes the applicator, the saccharide, and an energy-delivery device. The energy-delivery device can be configured to apply ultrasound, optical, thermal, or another type of energy to the subject's skin to drive the saccharide into the subject's skin. The system can also include a penetration enhancer configured to enhance penetration of the saccharide into the subject's skin. The penetration enhancer can be applied with the saccharide or separately.
摘要:
A cryoprotectant for use with a treatment device for improved removal of heat from subcutaneous lipid-rich cells of a subject having skin is provided. The cryoprotectant is a non-freezing liquid, gel, or paste for allowing pre-cooling of the treatment device below 0° C. while preventing the formation of ice thereon. The cryoprotectant may also prevent freezing of the treatment device to the skin or ice from forming from moisture seeping out from the skin. The cryoprotectant may further be hygroscopic, thermally conductive, and biocompatible.
摘要:
A method for strengthening, toning, and firming muscle tissues, the method includes receiving parameters for operating a magnetic muscle stimulation device. The parameters include: a first waveform frequency; one or more pulse durations; a second waveform frequency that is non-zero; causing, a first alternating current having one or more first pulses to flow for a first length of time through a coil according to the first waveform frequency; causing, a second alternating current having one or more second pulses to flow through the coil for a second length of time according to the second waveform frequency lower than the first waveform frequency. The method includes repeating the causing of the first and second alternating currents for a plurality of iterations to provide a continuously pulsed time-varying magnetic field that alternates between the first and the second waveform frequencies to generate a treatment session.
摘要:
FIG. 1 is a front, top perspective view of an embodiment of an applicator for an electromagnetic muscle stimulator therapeutic device; FIG. 2 is a front side view of the applicator of FIG. 1; FIG. 3 is a back side view of the applicator of FIG. 1; FIG. 4 is a left side view of the applicator of FIG. 1, the right side view thereof being a mirror image; FIG. 5 is a top plan view of the applicator of FIG. 1; and, FIG. 6 is a bottom plan view of the applicator of FIG. 1. The broken lines shown in the figures depict portions of the applicator for a therapeutic device and form no part of the claimed design.