Abstract:
An inductor is provided which includes a plurality of via holes vertically passing through a substrate, the substrate having insulating properties, vertical conductive portions filling the via holes, and horizontal conductive portions connecting each individual vertical conductive portions at the top and the bottom of the substrate to form a single coil structure with the vertical conductive portions.
Abstract:
An image forming element includes an image drum including a plurality of ring electrodes and a slot. The plurality of ring electrodes are formed to be spaced apart from one another on a circumference of the image drum. The slot is formed in a longitudinal direction on the image drum. A connecting member includes a plurality of connecting electrodes and is disposed inside the image drum so that an end of the connecting member is received in the slot. The connecting electrodes are electrically connected with the ring electrodes one to one on the same line.
Abstract:
A lighting device is provided. The lighting device includes a light source, a light source supporting member which has a surface to which the light source is attached, and a heat sink on an opposite surface of the light source supporting member, for dissipating heat generated by the light source. In addition, the heat sink includes a heat transfer member which protrudes from the surface of the light source supporting member; a plurality of first fins which are spaced apart from each other at intervals in a length direction of the heat transfer member, and are arranged parallel to the light source supporting member; and a plurality of second fins which are spaced apart from each other at intervals, surround outer portions of the first fins, and are arranged perpendicularly to the light source supporting member.
Abstract:
A wafer level package for a surface acoustic wave device and a fabrication method thereof include a SAW device formed with a SAW element on an upper surface of a device wafer; a cap wafer joined on an upper part of the SAW element; a cavity part housing the SAW element between the cap wafer and the SAW device; a cap pad formed on an upper surface of the cap wafer; and a metal line formed to penetrate through the cap wafer to electrically connect the cap pad and the SAW element, the device wafer and the cap wafer being made of the same materials.
Abstract:
A wafer level packaging cap for covering a device wafer with a device thereon and a fabrication method thereof are provided. The method includes operations of forming a plurality of connection grooves on a wafer, forming a seed layer on the connection grooves, forming connection parts by filling the connection grooves with a metal material, forming cap pads on a top surface of the wafer to be electrically connected to the connection parts, bonding a supporting film with the top surface of the wafer on which the cap pads are formed, forming a cavity on a bottom surface of the wafer to expose the connection parts through the cavity, and forming metal lines on the bottom surface of the wafer to be electrically connected to the connection parts.
Abstract:
An LED package includes a substrate, an LED, and a cap. The substrate includes a first conductor unit, a second conductor unit, and a non-conductor unit which electrically insulates the first and second conductor unit. The LED is bonded to the first conductor unit. The cap is mounted on the substrate over the LED and comprises a conductive wire which connects the LED to the second conductor unit.
Abstract:
An image sensor package and a solid state imaging device. The image sensor package includes an image sensor having an image sensor and connection pads on a wafer. A transparent plate is attached to the upper surface of the image sensor chip via an adhesive. The connection pads include connectors, and the image sensor package exchanges signals with a main board of the solid image device through the connectors.
Abstract:
A flexible device, a flexible pressure sensor, and a fabrication method thereof. The present flexible device includes: a first flexible substrate formed of a flexible material to have a flexibility; an active element formed to have a predetermined thickness and a flexibility, and being attached on the first flexible substrate; and a second flexible substrate formed of a flexible material to have a flexibility, and being deposited on the active element. The flexible device and the flexible pressure sensor have a high flexibility, so that they may be applied for a medical treatment such as implantation to a living body, a human body and so forth. In addition, the flexible device has a high flexibility, so that it may be inserted to a curved surface, which contributes to remove the limit of space where the semiconductor package device may be inserted.
Abstract:
A semiconductor wafer pre-aligning apparatus includes a wafer transfer unit for transferring a semiconductor wafer, and a wafer stopping unit for stopping and disposing the transferred semiconductor wafer on a predetermined position of a transferring path. The wafer stopping unit includes a stop elevatably disposed on the wafer transferring path and having a plurality of stepped and arc-shaped walls whose radii are different from one another but whose curvature centers coincide, and a device for elevating the wafer stopping unit. Thus, changes in wafer size can be dealt with easily and a clean work environment for wafer treatment can be maintained.