Abstract:
A field effect transistor device includes a substrate, a silicon germanium (SiGe) layer disposed on the substrate, gate dielectric layer lining a surface of a cavity defined by the substrate and the silicon germanium layer, a metallic gate material on the gate dielectric layer, the metallic gate material filling the cavity, a source region, and a drain region.
Abstract:
A multi-gate transistor having a plurality of sidewall contacts and a fabrication method that includes forming a semiconductor fin on a semiconductor substrate and etching a trench within the semiconductor fin, depositing an oxide material within the etched trench, and etching the oxide material to form a dummy oxide layer along exposed walls within the etched trench; and forming a spacer dielectric layer along vertical sidewalls of the dummy oxide layer. The method further includes removing exposed dummy oxide layer in a channel region in the semiconductor fin and beneath the spacer dielectric layer, forming a high-k material liner along sidewalls of the channel region in the semiconductor fin, forming a metal gate stack within the etched trench, and forming a plurality of sidewall contacts within the semiconductor fin along adjacent sidewalls of the dummy oxide layer.
Abstract:
A method of fabricating an embedded stressor within a semiconductor structure and a semiconductor structure including the embedded stressor includes forming forming a dummy gate stack over a substrate of stressor material, anistropically etching sidewall portions of the substrate subjacent to the dummy gate stack to form the embedded stressor having angled sidewall portions, forming conductive material onto the angled sidewall portions of the embedded stressor, removing the dummy gate stack, planarizing the conductive material, and forming a gate stack on the conductive material.
Abstract:
A magnetic sensor array including magnetoresistive sensor elements having outputs combined by frequency division multiplexing (FDM) is provided. Each sensor element provides an input to a mixer which provides a distinct frequency shift. Preferably, time division multiplexing is also used to combine sensor element outputs. Each sensor element is typically in proximity to a corresponding sample. The sensor elements are preferably subarrays having row and column addressable sensor element pixels. This arrangement provides multiple sensor pixels for each sample under test. Multiplexing of sensor element outputs advantageously reduces readout time. A modulated external magnetic field is preferably applied during operation, to reduce the effect of 1/f noise on the sensor element signals. The effect of electromagnetic interference (EMI) induced by the magnetic field on sensor element signals is advantageously reduced by the mixing required for FDM.
Abstract:
A plate varactor includes a dielectric substrate and a first electrode embedded in a surface of the substrate. A capacitor dielectric layer is disposed over the first electrode, and a layer of graphene is formed over the dielectric layer to contribute a quantum capacitance component to the dielectric layer. An upper electrode is formed on the layer of graphene. Other embodiments and methods for fabrication are also included.
Abstract:
A transistor structure is formed to include a substrate and, overlying the substrate, a source; a drain; and a channel disposed vertically between the source and the drain. The channel is coupled to a gate conductor that surrounds the channel via a layer of gate dielectric material that surrounds the channel. The gate conductor is composed of a first electrically conductive material having a first work function that surrounds a first portion of a length of the channel and a second electrically conductive material having a second work function that surrounds a second portion of the length of the channel. A method to fabricate the transistor structure is also disclosed. The transistor structure can be characterized as being a vertical field effect transistor having an asymmetric gate.
Abstract:
A field effect transistor device includes a substrate, a silicon germanium (SiGe) layer disposed on the substrate, gate dielectric layer lining a surface of a cavity defined by the substrate and the silicon germanium layer, a metallic gate material on the gate dielectric layer, the metallic gate material filling the cavity, a source region, and a drain region.
Abstract:
Carbon-based light emitting diodes (LEDs) and techniques for the fabrication thereof are provided. In one aspect, a LED is provided. The LED includes a substrate; an insulator layer on the substrate; a first bottom gate and a second bottom gate embedded in the insulator layer; a gate dielectric on the first bottom gate and the second bottom gate; a carbon material on the gate dielectric over the first bottom gate and the second bottom gate, wherein the carbon material serves as a channel region of the LED; and metal source and drain contacts to the carbon material.
Abstract:
A transistor structure is formed to include a substrate and, overlying the substrate, a source; a drain; and a channel disposed vertically between the source and the drain. The channel is coupled to a gate conductor that surrounds the channel via a layer of gate dielectric material that surrounds the channel. The gate conductor is composed of a first electrically conductive material having a first work function that surrounds a first portion of a length of the channel and a second electrically conductive material having a second work function that surrounds a second portion of the length of the channel. A method to fabricate the transistor structure is also disclosed. The transistor structure can be characterized as being a vertical field effect transistor having an asymmetric gate.
Abstract:
A method of fabricating a semiconducting device is disclosed. A carbon nanotube is deposited on a substrate of the semiconducting device. A first contact on the substrate over the carbon nanotube. A second contact on the substrate over the carbon nanotube, wherein the second contact is separated from the first contact by a gap. A portion of the substrate in the gap between the first contact and the second contact is removed.