摘要:
Fractional frequency reuse (FFR) is defined based on a mobility condition of an access terminal. For example, upon determining that an access terminal is moving (or at a cell edge, or experiencing poor link conditions, etc., due to mobility), FFR may be defined for the serving access point of the access terminal and/or for neighbor access points to maintain acceptable link quality for the access terminal. In particular, FFR may be defined in a manner that frees-up or otherwise reserves resources for the access terminal. For example, the serving access point may allocate additional sub-bands for the access terminal and/or increase the power levels used on the sub-bands allocated for the access terminal. In addition, neighbor access points may back-off these sub-bands.
摘要:
Systems and methods for managing communication in an unlicensed band of frequencies to supplement communication in a licensed band of frequencies in unlicensed spectrum are disclosed. The management may comprise, for example, monitoring utilization of resources currently available to a first Radio Access Technology (RAT) via at least one of a Primary Cell (PCell) operating in the licensed band, a set of one or more Secondary Cells (SCells) operating in the unlicensed band, or a combination thereof. Based on the utilization, a first SCell among the set of SCells may be configured or de-configured with respect to operation in the unlicensed band.
摘要:
Techniques are provided for utilizing selected inter-frame spacing, such as reduced inter-frame spacing (RIFS) or short inter-frame spacing (SIFS) to avoid failed data transmissions in a Wi-Fi network or the like. For example, there is provided a method, operable by a transmitter node or entity, such as, for example, an access point (AP), that may involve sending a data transmission in a data aggregation mode, the data transmission comprising aggregated MAC protocol data units (A-MPDUs). The method may involve monitoring for and detecting potential short interference bursts in the network. The method may involve re-sending the data transmission in a data bursting mode, the data transmission comprising back-to-back data packet bursts separated by a selected inter-frame spacing.
摘要:
Systems and methodologies for determining validity of a location of a vehicle include obtaining a first location of the vehicle corresponding to a first time. A first RSU signal including an indication of a location of the first RSU is received at the vehicle from a first Roadside Unit (RSU). One or more location measurements are obtained of the vehicle relative thee first RSU based on one or more sensors of the vehicle. The first location of the vehicle is compared with the first RSU-based location of the vehicle.
摘要:
Techniques for autonomous uplink (AUL) transmissions are provided that allow for efficient use of shared radio frequency spectrum band resources. A user equipment (UE) may determine a duration of an AUL transmission and modify an uplink waveform or provide an indication to a base station of one or more channel resources that may be available for base station transmissions, in order to more fully utilize shared radio frequency spectrum band resources within a maximum channel occupancy time (MCOT). A base station may activate or deactivate AUL transmissions through downlink control information (DCI) transmitted to the UE. A UE and base station may exchange various other control information to provide relatively efficient autonomous uplink transmissions and use of the shared radio frequency spectrum band resources.
摘要:
Embodiments include methods performed by a processor of a vehicle control unit for managing a driving condition anomaly. In some embodiments, the vehicle may receive a first driving condition based on data from a first vehicle sensor, receive a second driving condition based on data from another data source, determine a driving condition anomaly based on the first driving condition and the second driving condition, send a request for information to a driving condition database, receive the requested information from the driving condition database, and resolve the driving condition anomaly based on the requested information from the driving condition database.
摘要:
Aspects for reducing interference between networks are provided. A signal transmitted by one or more devices in a first network over a communications medium using an unlicensed frequency spectrum is decoded to determine one or more parameters of a packet in the signal. A level of utilization of the communications medium by the one or more devices in the first network can be estimated based at least in part on a signal strength of the signal and the one or more parameters. A period of time for communicating in a second network over the communications medium using the unlicensed frequency spectrum can be adjusted based at least in part on the level of utilization of the communications medium by the first network. In addition, a number of active transmitters over the communications medium can be determined based at least in part on identifying a source entity related to transmission of the signal, and adjusting the time for communicating in the second network can be further based at least in part on the number of active transmitters.
摘要:
Techniques for reservation coordination and related operations in shared spectrum are disclosed. Communication over a communication medium may be performed in accordance with a first Radio Access Technology (RAT) and in accordance with a communication pattern of active periods and inactive periods of communication. A channel reservation message may be transmitted in accordance with a second RAT to reserve the communication medium for one of the active periods. The channel reservation message may be transmitted randomly at a plurality of successive burst slots. In addition or as an alternative, one or more medium access parameters associated with the channel reservation message may be set to a value below a threshold associated with aggressive contention.
摘要:
The disclosure provides techniques for reducing interference caused by a first device to a second device receiving a satellite-based positioning signal. A device such as a user equipment (UE) or base station (eNB) determines a threshold transmission power for a transmission frequency of the device. The device also determines a signal strength of the satellite-based positioning system signal at the device. The device then controls a transmission property of the device based on the signal strength of the satellite-based positioning system signal when a transmission power of the device at the transmission frequency satisfies the threshold. The device may also determine that reception of the satellite-based positioning system signal by the second device is likely to be affected by a transmission from the device at a transmission power that satisfies the threshold and control the transmission property when reception of the satellite-based positioning system signal is likely to be affected.
摘要:
Techniques for managing co-existence on a shared communication medium are disclosed. An activation command or a deactivation command configuring an access terminal for activated operation or deactivated operation over a communication medium, respectively, may be exchanged in accordance with a Time Division Multiplexed (TDM) communication pattern defining active periods and inactive periods of communication over the communication medium. An acknowledgment message may be sent by, or received from, the access terminal in response to the activation command or the deactivation command. Communication may be activated or deactivated over the communication medium in accordance with the TDM communication pattern in response to the acknowledgment message indicating a positive acknowledgment of the activation command or the deactivation command, respectively, and not activated or deactivated over the communication medium in accordance with the TDM communication pattern in response to the acknowledgment message not indicating a positive acknowledgment of the activation or deactivation command.