摘要:
Field effect devices having a gate controlled via a nanotube switching element. Under one embodiment, a non-volatile transistor device includes a source region and a drain region of a first semiconductor type of material and each in electrical communication with a respective terminal. A channel region of a second semiconductor type of material is disposed between the source and drain region. A gate structure is disposed over an insulator over the channel region and has a corresponding terminal. A nanotube switching element is responsive to a first control terminal and a second control terminal and is electrically positioned in series between the gate structure and the terminal corresponding to the gate structure. The nanotube switching element is electromechanically operable to one of an open and closed state to thereby open or close an electrical communication path between the gate structure and its corresponding terminal. When the nanotube switching element is in the closed state, the channel conductivity and operation of the device is responsive to electrical stimulus at the terminals corresponding to the source and drain regions and the gate structure.
摘要:
Random access memory including nanotube switching elements. A memory cell includes first and second nanotube switching elements and an electronic memory. Each nanotube switching element includes conductive terminals, a nanotube article and control circuitry capable of controllably form and unform an electrically conductive channel between the conductive terminals. The electronic memory is a volatile storage device capable of storing a logic state in response to electrical stimulus. In certain embodiment the electronic memory has cross-coupled first and second inverters in electrical communication with the first and second nanotube switching elements. The cell can operate as a normal electronic memory, or can operate in a shadow memory or store mode (e.g., when power is interrupted) to transfer the electronic memory state to the nanotube switching elements. The device may later be operated in a recall mode where the state of the nanotube switching elements may be transferred to the electronic memory.
摘要:
A nanotube-based switching element includes an input node, an output node, and a nanotube channel element having at least one electrically conductive nanotube. A control structure is disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel between said input node and said output node. The output node is constructed and arranged so that channel formation is substantially unaffected by the electrical state of the output node. The control structure includes a control electrode and a release electrode, disposed on opposite sides of the nanotube channel element. The control and release may be used to form a differential input, or if the device is constructed appropriately to operate the circuit in a non-volatile manner. The switching elements may be arranged into logic circuits and latches having differential inputs and/or non-volatile behavior.
摘要:
Nanotube-based switching elements and logic circuits. Under one embodiment of the invention, a switching element includes an input node, an output node, a nanotube channel element having at least one electrically conductive nanotube, and a control electrode. The control electrode is disposed in relation to the nanotube channel element to controllably form an electrically conductive channel between the input node and the output node. The channel at least includes said nanotube channel element. The output node is constructed and arranged so that channel formation is substantially unaffected by the electrical state of the output node. Under another embodiment of the invention, the control electrode is arranged in relation to the nanotube channel element to form said conductive channel by causing electromechanical deflection of said nanotube channel element. Under another embodiment of the invention, the output node includes an isolation structure disposed in relation to the nanotube channel element so that channel formation is substantially invariant from the state of the output node. Under another embodiment of the invention, the isolation structure includes electrodes disposed on opposite sides of the nanotube channel element and said electrodes produce substantially the same electric field. Under another embodiment of the invention, a Boolean logic circuit includes at least one input terminal and an output terminal, and a network of nanotube switching elements electrically disposed between said at least one input terminal and said output terminal. The network of nanotube switching elements effectuates a Boolean function transformation of Boolean signals on said at least one input terminal. The Boolean function transformation includes a Boolean inversion within the function, such as a NOT or NOR function.
摘要:
Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A spin-coatable liquid containing nanotubes for use in an electronics fabrication process includes a solvent containing a plurality of nanotubes. The nanotubes are at a concentration of greater than 1 mg/L. The nanotubes are pretreated to reduce the level of metallic and particulate impurities to a preselected level, and the preselected metal and particulate impurities levels are selected to be compatible with an electronics manufacturing process. The solvent also is selected for compatibility with an electronics manufacturing process.
摘要:
Nanotube-based switching elements with multiple controls and circuits made from such. A switching element includes an input node, an output node, and a nanotube channel element having at least one electrically conductive nanotube. A control structure is disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel between said input node and said output node. The output node is constructed and arranged so that channel formation is substantially unaffected by the electrical state of the output node. The control structure includes a control electrode and a release electrode, disposed on opposite sides of the nanotube channel element. The control and release may be used to form a differential input, or if the device is constructed appropriately to operate the circuit in a non-volatile manner. The switching elements may be arranged into logic circuits and latches having differential inputs and/or non-volatile behavior.
摘要:
Sensor platforms and methods of making them are described. A platform having a non-horizontally oriented sensor element comprising one or more nanostructures such as nanotubes is described. Under certain embodiments, a sensor element has or is made to have an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes. Under certain embodiments, the sensor element comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing one or more nanotubes on the structure to provide material for a sensor element; and providing circuitry to electrically sense the sensor element's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under other embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning. Under certain embodiments, a large-scale array of sensor platforms includes a plurality of sensor elements.
摘要:
Nanotube films and articles and methods of making the same. A conductive article includes an aggregate of nanotube segments which contact other nanotube segments to define a plurality of conductive pathways along the article. Segments may have different lengths and may be shorter than the article. Conductive articles may be made on a substrate by forming a nanotube fabric on the substrate, and defining within the fabric a pattern corresponding to the conductive article. The nanotube fabric may be grown on the substrate using a catalyst, such as a gas phase a metallic gas phase catalyst. The nanotube fabric may be formed by depositing a solution of suspended nanotubes on the substrate, which may be spun to create a spin-coating of the solution. The solution may be deposited by dipping the substrate into the solution. The nanotube fabric may be formed by spraying an aerosol having nanotubes onto the substrate.
摘要:
Circuit arrays having cells with combinations of transistors and nanotube switches. Under one embodiment, a circuit array includes a plurality of cells arranged in an organization of words, each word having a plurality of bits. Each cell is responsive to a bit line, word line, reference line, and release line. Bit lines are arranged orthogonally relative to word lines and each word line and bit line are shared among a plurality of cells. Each cell is selectable via the activation of the bit line and word line. Each cell includes a field effect transistor coupled to a nanotube switching element. The nanotube switching element is switchable to at least two physical positions at least in part in response to electrical stimulation via the reference line and release line. Information state of the cell is non-volatilely stored via the respective physical position of the nanotube switching element. Under another embodiment, a circuit array includes a plurality of cells arranged in an organization of words, each word having a plurality of bits. Each cell is responsive to a bit line, word line, and reference line. Each word line and bit line are shared among a plurality of cells. Each cell is selectable via the activation of the bit line and word line. Each cell includes a field effect transistor and a nanotube switching element. Each nanotube switching element includes a nanotube article positioned between a set electrode and a release electrode. The set electrode may be electrically stimulated to electro-statically attract the nanotube article into contact with the set electrode and the release electrode may be electrically stimulated to electro-statically attract the nanotube article out of contact with the set electrode. Information state of the cell is non-volatilely stored via the respective physical position of the nanotube switching element. Cells are arranged as pairs with the nanotube switching elements of the pair being cross coupled so that the set electrode of one nanotube switching element is coupled to the release electrode of the other and the release electrode of the one nanotube switching element being coupled to the set electrode of the other. The nanotube articles are coupled to the reference line, and the source of one field effect transistor of a pair is coupled to the set electrode to one of the two nanotube switching elements and the source of the other field effect transistor of the pair is coupled to the release electrode to the one of the two nanotube switching elements.
摘要:
Nanotube-based switching elements and logic circuits. Under one embodiment of the invention, a switching element includes an input node, an output node, a nanotube channel element having at least one electrically conductive nanotube, and a control electrode. The control electrode is disposed in relation to the nanotube channel element to controllably form an electrically conductive channel between the input node and the output node. The channel at least includes said nanotube channel element. The output node is constructed and arranged so that channel formation is substantially unaffected by the electrical state of the output node. Under another embodiment of the invention, the control electrode is arranged in relation to the nanotube channel element to form said conductive channel by causing electromechanical deflection of said nanotube channel element. Under another embodiment of the invention, the output node includes an isolation structure disposed in relation to the nanotube channel element so that channel formation is substantially invariant from the state of the output node. Under another embodiment of the invention, the isolation structure includes electrodes disposed on opposite sides of the nanotube channel element and said electrodes produce substantially the same electric field. Under another embodiment of the invention, a Boolean logic circuit includes at least one input terminal and an output terminal, and a network of nanotube switching elements electrically disposed between said at least one input terminal and said output terminal. The network of nanotube switching elements effectuates a Boolean function transformation of Boolean signals on said at least one input terminal. The Boolean function transformation includes a Boolean inversion within the function, such as a NOT or NOR function.