摘要:
Circuit arrays having cells with combinations of transistors and nanotube switches. Under one embodiment, a circuit array includes a plurality of cells arranged in an organization of words, each word having a plurality of bits. Each cell is responsive to a bit line, word line, reference line, and release line. Bit lines are arranged orthogonally relative to word lines and each word line and bit line are shared among a plurality of cells. Each cell is selectable via the activation of the bit line and word line. Each cell includes a field effect transistor coupled to a nanotube switching element. The nanotube switching element is switchable to at least two physical positions at least in part in response to electrical stimulation via the reference line and release line. Information state of the cell is non-volatilely stored via the respective physical position of the nanotube switching element. Under another embodiment, a circuit array includes a plurality of cells arranged in an organization of words, each word having a plurality of bits. Each cell is responsive to a bit line, word line, and reference line. Each word line and bit line are shared among a plurality of cells. Each cell is selectable via the activation of the bit line and word line. Each cell includes a field effect transistor and a nanotube switching element. Each nanotube switching element includes a nanotube article positioned between a set electrode and a release electrode. The set electrode may be electrically stimulated to electro-statically attract the nanotube article into contact with the set electrode and the release electrode may be electrically stimulated to electro-statically attract the nanotube article out of contact with the set electrode. Information state of the cell is non-volatilely stored via the respective physical position of the nanotube switching element. Cells are arranged as pairs with the nanotube switching elements of the pair being cross coupled so that the set electrode of one nanotube switching element is coupled to the release electrode of the other and the release electrode of the one nanotube switching element being coupled to the set electrode of the other. The nanotube articles are coupled to the reference line, and the source of one field effect transistor of a pair is coupled to the set electrode to one of the two nanotube switching elements and the source of the other field effect transistor of the pair is coupled to the release electrode to the one of the two nanotube switching elements.
摘要:
Circuit arrays having cells with combinations of transistors and nanotube switches. Under one embodiment, cells are arranged as pairs with the nanotube switching elements of the pair being cross coupled so that the set electrode of one nanotube switching element is coupled to the release electrode of the other and the release electrode of the one nanotube switching element being coupled to the set electrode of the other. The nanotube articles are coupled to the reference line, and the source of one field effect transistor of a pair is coupled to the set electrode to one of the two nanotube switching elements and the source of the other field effect transistor of the pair is coupled to the release electrode to the one of the two nanotube switching elements.
摘要:
Field effect devices having a source controlled via a nanotube switching element. Under one embodiment, a field effect device includes a source region and a drain region of a first semiconductor type and a channel region disposed therebetween of a second semiconductor type. The drain region is connected to a corresponding terminal. A gate structure is disposed over the channel region and connected to a corresponding terminal. A nanotube switching element is responsive to a first control terminal and a second control terminal and is electrically positioned in series between the source region and a terminal corresponding to the source region. The nanotube switching element is electromechanically operable to one of an open and closed state to thereby open or close an electrical communication path between the source region and its corresponding terminal. When the nanotube switching element is in the closed state, the channel conductivity and operation of the device is responsive to electrical stimulus at the terminals corresponding to the source and drain regions and the gate structure.
摘要:
An electrostatic discharge (ESD) protection circuit for protecting a protected circuit is coupled to an input pad. The ESD circuit includes a nanotube switch electrically having a control. The switch is coupled to the protected circuit and to a discharge path. The nanotube switch is controllable, in response to electrical stimulation of the control, between a de-activated state and an activated state. The activated state creates a current path so that a signal on the input pad flows to the discharge path to cause the signal at the input pad to remain within a predefined operable range for the protected circuit. The nanotube switch, the input pad, and the protected circuit may be on a semiconductor chip. The nanotube switch may be on a chip carrier. The deactivated and activated states may be volatile or non-volatile depending on the embodiment.
摘要:
Sensor platforms and methods of making them are described. A platform having a non-horizontally oriented sensor element comprising one or more nanostructures such as nanotubes is described. Under certain embodiments, a sensor element has or is made to have an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes. Under certain embodiments, the sensor element comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing one or more nanotubes on the structure to provide material for a sensor element; and providing circuitry to electrically sense the sensor element's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under other embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning. Under certain embodiments, a large-scale array of sensor platforms includes a plurality of sensor elements.
摘要:
One-time programmable, non-volatile field effect devices and methods of making same. Under one embodiment, a one-time-programmable, non-volatile field effect device includes a source, drain and gate with a field-modulatable channel between the source and drain. Each of the source, drain, and gate has a corresponding terminal. An electromechanically-deflectable, nanotube switching element is electrically coupled to one of the source, drain and gate and has an electromechanically-deflectable nanotube element that is positioned to be deflectable in response to electrical stimulation to form a non-volatile closed electrical state between the one of the source, drain and gate and its corresponding terminal.
摘要:
Nanotube-based switching elements and logic circuits are disclosed. Under one embodiment of the invention, a Boolean logic circuit includes at least one input terminal and an output terminal, and a network of nanotube switching elements electrically disposed between said at least one input terminal and said output terminal. The network of nanotube switching elements effectuates a Boolean function transformation of Boolean signals on said at least one input terminal. The Boolean function transformation includes a Boolean inversion within the function, such as a NOT or NOR function.
摘要:
Boolean logic circuits comprising nanotube-based switching elements with multiple controls. The Boolean logic circuits include input and output terminals and a network of nanotube switching elements electrically disposed between said at least one input terminal and said output terminal. Each switching element includes an input node, an output node, and a nanotube channel element having at least one electrically conductive nanotube. A control structure is disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel along the nanotube channel element. At least one nanotube switching element non-volatilely retains an informational state and at least one nanotube switching elements volatilely retains an informational state. The network of nanotube switching elements effectuates a Boolean function transformation of Boolean signals on said at least one input terminal. Dual rail cascode logic circuits may also be constructed from the nanotube switching elements.
摘要:
An electrically erasable programmable read only memory (EEPROM) cell includes cell selection circuitry and a storage cell for storing the informational state of the cell. The storage cell is an electro-mechanical data retention cell in which the physical positional state of a storage cell element represents the informational state of the cell. The storage cell element is a carbon nanotube switching element. The storage is writable with supply voltages used by said cell selection circuitry. The storage is writable and readable via said selection circuitry with write times and read times being within an order of magnitude. The write times and read times are substantially the same. The storage has no charge storage or no charge trapping.
摘要:
Under one aspect, a field effect device includes a gate, a source, and a drain, with a conductive channel between the source and the drain; and a nanotube switch having a corresponding control terminal, said nanotube switch being positioned to control electrical conduction through said conductive channel. Under another aspect, a field effect device includes a gate having a corresponding gate terminal; a source having a corresponding source terminal; a drain having a corresponding drain terminal; a control terminal; and a nanotube switching element positioned between one of the gate, source, and drain and its corresponding terminal and switchable, in response to electrical stimuli at the control terminal and at least one of the gate, source, and drain terminals, between a first non-volatile state that enables current flow between the source and the drain and a second non-volatile state that disables current flow between the source and the drain.