摘要:
Memory devices are described along with methods for manufacturing. A memory device as described herein includes a plurality of memory cells located between word lines and bit lines. Each memory cell comprises a diode and a plurality of memory elements each comprising one or more metal-oxygen compounds, the diode and the plurality of memory elements arranged in electrical series along a current path between a corresponding word line and a corresponding bit line.
摘要:
A NAND-type flash memory device includes asymmetric floating gates overlying respective wordlines. A given floating gate is sufficiently coupled to its respective wordline such that a large gate (i.e., wordline) bias voltage will couple the floating gate with a voltage which can invert the channel under the floating gate. The inversion channel under the floating gate can thus serve as the source/drain. As a result, the memory device does not need a shallow junction, or an assist-gate. In addition, the memory device exhibits relatively low floating gate-to-floating gate (FG-FG) interference.
摘要:
A stacked non-volatile memory device comprises a plurality of bitline and wordline layers stacked on top of each other. The bitline layers comprise a plurality of bitlines that can be formed using advanced processing techniques making fabrication of the device efficient and cost effective. The device can be configured for NAND operation.
摘要:
A non-volatile memory device on a semiconductor substrate may include a bottom oxide layer over the substrate, a middle layer of silicon nitride over the bottom oxide layer, and a top oxide layer over the middle layer. The bottom oxide layer may have a hydrogen concentration of up to 5E19 cm−3 and an interface trap density of up to 5E11 cm−2 eV−1. The three-layer structure may be a charge-trapping structure for the memory device, and the memory device may further include a gate over the structure and source and drain regions in the substrate.
摘要:
Memory cells comprising: a semiconductor substrate having at least two source/drain regions separated by a channel region; a charge-trapping structure disposed above the channel region; and a gate disposed above the charge-trapping structure; wherein the charge-trapping structure comprises a bottom insulating layer, a first charge-trapping layer, and a second charge-trapping layer, wherein an interface between the bottom insulating layer and the substrate has a hydrogen concentration of less than about 3×1011/cm−2, and methods for forming such memory cells.
摘要翻译:存储单元包括:半导体衬底,具有由沟道区分开的至少两个源极/漏极区域; 设置在通道区域上方的电荷捕获结构; 以及设置在电荷捕获结构上方的栅极; 其中所述电荷捕获结构包括底部绝缘层,第一电荷俘获层和第二电荷俘获层,其中所述底部绝缘层和所述基底之间的界面的氢浓度小于约3×1011 / cm -2,以及形成这种记忆单元的方法。
摘要:
A phase change random access memory PCRAM device is described suitable for use in large-scale integrated circuits. An exemplary memory device has a pipe-shaped first electrode formed from a first electrode layer on a sidewall of a sidewall support structure. A sidewall spacer insulating member is formed from a first oxide layer and a second, “L-shaped,” electrode is formed on the insulating member. An electrical contact is connected to the horizontal portion of the second electrode. A bridge of memory material extends from a top surface of the first electrode to a top surface of the second electrode across a top surface of the sidewall spacer insulating member.
摘要:
An air tunnel floating gate memory cell includes an air tunnel defined over a substrate. A first polysilicon layer (floating gate) is defined over the air tunnel. An oxide layer is disposed over the first polysilicon layer such that the oxide layer caps the first polysilicon layer and defines the sidewalls of the air tunnel. A second polysilicon layer, functioning as a word line, is defined over the oxide layer. A method for making an air tunnel floating gate memory cell is also disclosed. A sacrificial layer is formed over a substrate. A first polysilicon layer is formed over the sacrificial layer. An oxide layer is deposited over the first polysilicon layer such that the oxide layer caps the first polysilicon layer and defines the sidewalls of the sacrificial layer. A hot phosphoric acid (H3PO4) dip is used to etch away the sacrificial layer to form an air tunnel.
摘要:
A memory device comprises first and second electrodes with a memory element and a buffer layer located between and electrically coupled to them. The memory element comprises one or more metal oxygen compounds. The buffer layer comprises at least one of an oxide and a nitride. Another memory device comprises first and second electrodes with a memory element and a buffer layer, having a thickness of less than 50 Å, located between and electrically coupled to them. The memory comprises one or more metal oxygen compounds. An example of a method of fabricating a memory device includes forming first and second electrodes. A memory, located between and electrically coupled to the first and the second electrodes, is formed; the memory comprises one or more metal oxygen compounds and the buffer layer comprises at least one of an oxide and a nitride.
摘要:
A memory device comprises first and second electrodes with a memory element and a buffer layer located between and electrically coupled to them. The memory element comprises one or more metal oxygen compounds. The buffer layer comprises at least one of an oxide and a nitride. Another memory device comprises first and second electrodes with a memory element and a buffer layer, having a thickness of less than 50 Å, located between and electrically coupled to them. The memory comprises one or more metal oxygen compounds. An example of a method of fabricating a memory device includes forming first and second electrodes. A memory, located between and electrically coupled to the first and the second electrodes, is formed; the memory comprises one or more metal oxygen compounds and the buffer layer comprises at least one of an oxide and a nitride.
摘要:
A memory device has a sidewall insulating member with a sidewall insulating member length according to a first spacer layer thickness. A first electrode formed from a second spacer layer having a first electrode length according to a thickness of a second spacer layer and a second electrode formed from the second spacer layer having a second electrode length according to the thickness of the second spacer layer are formed on sidewalls of the sidewall insulating member. A bridge of memory material having a bridge width extends from a top surface of the first electrode to a top surface of the second electrode across a top surface of the sidewall insulating member, wherein the bridge comprises memory material.