Abstract:
A tunable optical filter (30) includes a thin film waveguide (10) and a ring (308) surrounding the thin film waveguide. The ring can be mechanically pressed inwardly toward or pulled outwardly away from the thin film waveguide by external radial forces (306). A central wavelength of the tunable optical filter can be tuned according to the external radial forces. The thin film waveguide includes a substrate (102) and a multi-layered thin film (104) deposited on the substrate. The multi-layered thin film includes high refractive index layers (106) and low refractive index layers (108) alternately superposed on one another to form the multi-layered structure.
Abstract:
A light guide plate (2) into which light beams are introduced from a light source has a light incident surface (21) receiving the light beams from the light source, a light emitting surface (22) transmitting the light beams therethrough, and a bottom surface (23) opposite to the light emitting surface. The bottom surface has at least two series of diffusing elements (231, 232) for diffusing and reflecting light beams toward the light emitting surface, in which the at least two series of V-shaped grooves are formed at two different directions. By utilization of the two series of diffusing elements, the light guide plate provides a uniform luminance over the whole surface of the light emitting surface.
Abstract:
A digital camera module 100) for a portable electronic device includes an image-obtaining device 20) for obtaining images, and a controlling device 10). The image-obtaining device includes a printed circuit board 204) with an image sensor 206) attached thereon. The controlling device includes a microphone 102) for receiving an incoming voice, a voice recognition module 104) electrically connected with the microphone for recognizing predetermined voice inputs, and a power source 202) providing electrical energy to the printed circuit board, the microphone and the voice recognition module. The controlling device controls power supplied to the image-obtaining device when the voice recognition module recognizes a voice input such as “don't take a picture.”
Abstract:
A method for manufacturing a light guide plate (70) includes: providing a first substrate (30); coating a photo-resist (600) on the first substrate; exposing the photo-resist using a photo mask; developing the photo-resist; anisotropically dry etching the first substrate; removing remaining photo-resist (640), thereby providing a mold (40); providing a second substrate (50) and a hot-embossing machine (80), and conducting hot-embossing of the second substrate using the mold and the hot-embossing machine, thereby providing the light guide plate. By using the above-described dry etching and hot-embossing methods, a pattern of the photo mask is precisely transferred to the first substrate and the light guide plate. A diameter of the each of micro-dots formed on the light guide plate is as little as 10 nanometers. Thus a uniformity of luminance and color provided by the entire light guide plate is improved.
Abstract:
An electrochromic display device (30) generally includes a first sheet (31) and a second sheet (32). A bottom electrode (33), an ion storage layer (34), an electrolyte layer (35), an electrochromic layer (36), and a top electrode (37) are interposed between the first sheet and the second sheet in that order from bottom to top. An external voltage source connects the bottom electrode and the top electrode. The electrochromic layer is a porous nanostructured film, and adheres to the top electrode. Because the electrochromic layer is a porous nanostructured film, it has a very large surface area. Therefore much more electrochromic material adheres to the electrochromic layer, and the electrochromism characteristics of the electrochromic display device are greatly improved.
Abstract:
A heat generator includes a heat generating member including a heat flow output face, a heat flow insulative member attachably surrounding the heat generating member except the heat flow output face for insulating the heat generating member except the heat flow output face, a heat flow compensating member attachably surrounding the heat flow insulative member but exposing the heat flow output face to allow it contacting with a specimen, and a heat flow compensating circuit connected between the heat flow insulative member and the heat flow compensating member. The circuit is capable of controlling heat generated by the heat flow compensating member to cause no heat flow flowing between the heat flow compensating member and the heat flow insulative member whereby the heat energy of the heat flow outputing from the heat flow output face of the heat generating member is equal to the heat energy of heat generated by the heat generating member.
Abstract:
A thermal interface material (40) includes a silver colloid base (32), and an array of carbon nanotubes (22) disposed in the silver colloid base uniformly. The silver colloid base includes silver particles, boron nitride particles and polysynthetic oils. The silver colloid base has a first surface (42), and a second surface (44) opposite to the first surface. The carbon nanotubes are substantially parallel to each other, and extend from the first surface to the second surface. A method for manufacturing the thermal interface material includes the steps of: (a) forming an array of carbon nanotubes on a substrate; (b) immersing the carbon nanotubes in a silver colloid base; (c) solidifying the silver colloid base; and (d) peeling the solidified silver colloid base with the carbon nanotubes secured therein off from the substrate.
Abstract:
A heat pipe (20) includes a pipe (21), a wick (22), and an operating fluid. The wick is a capillary structure including a carbon nanotube layer, and is fixed to an inside wall of the pipe. The operating fluid is sealed in the pipe and soaks into the wick. The operating fluid includes a pure liquid, and a plurality of nanometer-scale particles uniformly suspended in the pure liquid. The nanometer-scale particles can be carbon nanocapsules (30) or particles of a metal (32) with high thermal conductivity. Each carbon nanocapsule can further have a metal with high thermal conductivity filled therein. The carbon nanotube layer contains carbon nanotubes of small size and high thermal conductivity, therefore the capillary performance of the wick is good. Further, because the operating fluid includes nanometer-scale particles with high thermal conductivity, this ensures that the operating fluid has high thermal conductivity.
Abstract:
A light-emitting diode (LED) (10) includes a chip body (103), an encapsulation can (105) surrounding the chip body, and a base (106) supporting the encapsulation can and the chip body thereon. Numerous diffusion structures (1050) are provided on the encapsulation can, and the encapsulation can is made of a piezoelectric material for widening radiation angles of light beams emitted from the chip body. With the diffusion structures and the piezoelectric encapsulation can, light beams from the chip body are diffused and attain wider radiation angles. A backlight system (900) includes a light guide plate (20), and a number of the above-described LEDs disposed adjacent to the light guide plate. Light beams having wide radiation angles are emitted from the LEDs and enter the light guide plate. This enables a light emitting surface of the light guide plate to have highly uniform brightness.
Abstract:
A heat dissipating circulatory system (8) includes a pool (7) for receiving an operating fluid, a pump (3), a heat spreader (2) and a condenser (4). A first pipe (51) interconnects an output end (42) of the condenser and an input end (71) of the pool. A second pipe (52) interconnects an output end (72) of the pool and an input end (31) of the pump. A third pipe (53) interconnects an output end (32) of the pump and an input end (21) of the heat spreader. A fourth pipe (54) interconnects an output end (22) of the heat spreader and an input end (41) of the condenser. The heat spreader includes a fin (13) and a liquid sputtering assembly (1). The liquid sputtering assembly includes a plurality of nozzles (11) and drivers (12). The operating fluid is directly sputtered onto the fin, thereby providing direct heat exchange.