摘要:
In one method of making an organic electroluminescent device, a transfer layer is solution coated on a donor substrate. The transfer layer includes an amorphous, non-polymeric, organic matrix with a light emitting material disposed in the matrix. The transfer layer is then selectively patterned on a receptor. Examples of patterning methods include laser thermal transfer or thermal head transfer. The method and associated materials can be used to form, for example, organic electroluminescent devices.
摘要:
A guest-host polarizer is disclosed that includes a host matrix, one or more first guest dyes disposed in the host matrix and oriented to absorb a first portion of visible light having a first polarization state, and one or more second guest dyes disposed in the host matrix and oriented to absorb a second portion of visible light having a second polarization state orthogonal to the first polarization state. Such guest-host polarizers can be used in various optical applications and display constructions.
摘要:
The present invention provides an active primer that includes an electronically active material dispersed in a binder. The active primer can be disposed between a thermal transfer donor sheet and a receptor to assist selective thermal transfer of a material from the donor sheet to the receptor to form at least a portion of an electronic device on the receptor. The binder of the active primer can be selected to improve adhesion of the transferred material to the receptor, or to enhance other transfer properties. The electronically active material of the active primer can be selected to maintain a desired level of functionality in the electronic device being patterned on the receptor.
摘要:
Articles having a component with a surface defining microstructured features can be formed using thermal transfer elements. One example of a suitable thermal transfer element includes a microstructured layer having a surface defining microstructured features imposed on the microstructured layer. The thermal transfer element is configured and arranged for the transfer of at least a portion of the microstructured layer to a receptor while substantially preserving the microstructured features of that portion.
摘要:
Disclosed are thermal transfer elements and processes for patterning solvent-coated layers and solvent-susceptible layers onto the same receptor substrate. These donor elements and methods are particularly suited for making organic electroluminescent devices and displays. The donor elements can include a substrate, an optional light-to-heat conversion layer, and a single or multicomponent transfer layer that can be imagewise transferred to a receptor to form an organic electroluminescent device, portions thereof, or components therefor. The methods offer advantages over conventional patterning techniques such as photolithography, and make it possible to fabricate new organic electroluminescent device constructions.
摘要:
The present invention provides an active primer that includes an electronically active material dispersed in a binder. The active primer can be disposed between a thermal transfer donor sheet and a receptor to assist selective thermal transfer of a material from the donor sheet to the receptor to form at least a portion of an electronic device on the receptor. The binder of the active primer can be selected to improve adhesion of the transferred material to the receptor, or to enhance other transfer properties. The electronically active material of the active primer can be selected to maintain a desired level of functionality in the electronic device being patterned on the receptor.
摘要:
Disclosed are thermal transfer elements and processes for patterning solvent-coated layers and solvent-susceptible layers onto the same receptor substrate. These donor elements and methods are particularly suited for making organic electroluminescent devices and displays. The donor elements can include a substrate, an optional light-to-heat conversion layer, and a single or multicomponent transfer layer that can be imagewise transferred to a receptor to form an organic electroluminescent device, portions thereof, or components therefor. The methods offer advantages over conventional patterning techniques such as photolithography, and make it possible to fabricate new organic electroluminescent device constructions.
摘要:
A thermal transfer element for forming a multilayer device may include a substrate and a multicomponent transfer unit that, when transferred to a receptor, is configured and arranged to form a first operational layer and a second operational layer of a multilayer device. In at least some instances, the thermal transfer element also includes a light-to-heat conversion (LTHC) layer that can convert light energy to heat energy to transfer the multicomponent transfer unit. Transferring the multicomponent transfer unit to the receptor may include contacting a receptor with a thermal transfer element having a substrate and a multicomponent transfer unit. Then, the thermal transfer element is selectively heated to transfer the multicomponent transfer unit to the receptor according to a pattern to form at least first and second operational layers of a device. Often, when the thermal transfer element includes a LTHC layer between the substrate and the transfer layer, the thermal transfer element can be illuminated with light according to the pattern and the light energy is converted to heat energy to selectively heat the thermal transfer element.
摘要:
A thermal transfer element for forming a multilayer device may include a substrate and a multicomponent transfer unit that, when transferred to a receptor, is configured and arranged to form a first operational layer and a second operational layer of a multilayer device. In at least some instances, the thermal transfer element also includes a light-to-heat conversion (LTHC) layer that can convert light energy to heat energy to transfer the multicomponent transfer unit. Transferring the multicomponent transfer unit to the receptor may include contacting a receptor with a thermal transfer element having a substrate and a multicomponent transfer unit. Then, the thermal transfer element is selectively heated to transfer the multicomponent transfer unit to the receptor according to a pattern to form at least first and second operational layers of a device. Often, when the thermal transfer element includes a LTHC layer between the substrate and the transfer layer, the thermal transfer element can be illuminated with light according to the pattern and the light energy is converted to heat energy to selectively heat the thermal transfer element.
摘要:
A thermal transfer element for forming a multilayer device may include a substrate and a multicomponent transfer unit that, when transferred to a receptor, is configured and arranged to form a first operational layer and a second operational layer of a multilayer device. In at least some instances, the thermal transfer element also includes a light-to-heat conversion (LTHC) layer that can convert light energy to heat energy to transfer the multicomponent transfer unit. Transferring the multicomponent transfer unit to the receptor may include contacting a receptor with a thermal transfer element having a substrate and a multicomponent transfer unit. Then, the thermal transfer element is selectively heated to transfer the multicomponent transfer unit to the receptor according to a pattern to form at least first and second operational layers of a device. Often, when the thermal transfer element includes a LTHC layer between the substrate and the transfer layer, the thermal transfer element can be illuminated with light according to the pattern and the light energy is converted to heat energy to selectively heat the thermal transfer element.