摘要:
Semiconductor devices with dual-metal gate structures and fabrication methods thereof. A semiconductor substrate with a first doped region and a second doped region separated by an insulation layer is provided. A first metal gate stack is formed on the first doped region, and a second metal gate stack is formed on the second doped region. A sealing layer is disposed on sidewalls of the first gate stack and the second gate stack. The first metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a first metal layer on the high-k dielectric layer, a metal insertion layer on the first metal layer, a second metal layer on the metal insertion layer, and a polysilicon layer on the second metal layer. The second metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a second metal layer on the high-k dielectric layer, and a polysilicon layer on the second metal layer.
摘要:
A semiconductor structure includes a substrate, a gate stack on the substrate, a source/drain region adjacent the gate stack, a source/drain silicide region on the source/drain region, a protection layer on the source/drain silicide region, wherein a region over the gate stack is substantially free from the protection layer, and a contact etch stop layer (CESL) having a stress over the protection layer and extending over the gate stack.
摘要:
A method of monitoring a critical dimension of a structural element in an integrated circuit is provided comprising the following steps: collecting an optical interference endpoint signal produced during etching one or more layers to form the structural element; and determining based upon the optical interference endpoint signal the critical dimension of the structural element.
摘要:
A method for fabricating an improved metal-insulator-metal capacitor is achieved. An insulating layer is provided overlying conducting lines on a semiconductor substrate. Via openings through the insulating layer to the conducting lines are filled with metal plugs. A first metal layer is deposited overlying the insulating layer and the metal plugs. A capacitor dielectric layer is deposited overlying the first metal layer wherein capacitor dielectric layer is deposited as a dual layer, each layer deposited within a separate chamber whereby pinholes are eliminated. A second metal layer and a barrier metal layer are deposited overlying the capacitor dielectric layer. The second metal layer and the barrier metal layer are patterned to form a top plate electrode. Thereafter, the capacitor dielectric layer and the first metal layer are patterned to form a bottom plate electrode completing fabrication of a metal-insulator-metal capacitor.
摘要:
The invention is a process for reducing variations in CD from wafer to wafer. It begins by increasing all line widths in the original pattern data file by a fixed amount that is sufficient to ensure that all lines will be wider than the lowest acceptable CD value. Using a reticle generated from this modified data file, the pattern is formed in photoresist and the resulting CD value is determined. If this turns out be outside (above) the acceptable CD range, the amount of deviation from the ideal CD value is determined and fed into suitable software that calculates the control parameters (usually time) for an ashing routine. After ashing, the lines will have been reduced in width by the amount necessary to obtain the correct CD. A fringe benefit of this trimming process is that edge roughness of the photoresist lines is reduced and line feet are removed.
摘要:
A method of forming a silicided gate on a substrate having active regions is provided. The method comprises forming silicide in the active regions and a portion of the gate, leaving a remaining portion of the gate unsilicided; forming a shielding layer over the active regions and gate after the forming step; forming a coating layer over portions of the shielding layer over the active regions; opening the shielding layer to expose the gate, wherein the coating layer protects the portions of the shielding layer over the active regions during the opening step; depositing a metal layer over the exposed gate; and annealing to cause the metal to react with the gate to silicidize at least a part of the remaining portion of the gate.
摘要:
A method for forming stressors in a semiconductor substrate is provided. The method includes providing a semiconductor substrate including a first device region and a second device region, forming shallow trench isolation (STI) regions with a high-shrinkage dielectric material in the first and the second device regions wherein the STI regions define a first active region in the first device region and a second active region in the second device region, forming an insulation mask over the STI region and the first active region in the first device region wherein the insulation mask does not extend over the second device region, and performing a stress-tuning treatment to the semiconductor substrate. The first active region and second active region have tensile stress and compressive stress respectively. An NMOS and a PMOS device are formed on the first and second active regions, respectively.
摘要:
Via hole and trench structures and fabrication methods are disclosed. The structure comprises a conductive layer in a dielectric layer, and a via hole in the dielectric layer for exposing a portion of a surface of the conductive layer. A conductive liner covers the exposed surface of the first conductive layer. A trench is formed on the via hole in the dielectric without the conductive liner layer in the trench. Dual damascene structures and fabrications methods are also disclosed. Following the fabrication methods of the via hole and trench structures, a conductive layer is further formed in the via hole and trench structures.
摘要:
A multiple gate region FET device for forming up to 6 FET devices and method for forming the same, the device including a multiple fin shaped structure comprising a semiconductor material disposed on a substrate; said multiple fin shaped structure comprising substantially parallel spaced apart sidewall portions, each of said sidewall portions comprising major inner and outer surfaces and an upper surface; wherein, each of said surfaces comprises a surface for forming an overlying field effect transistor (FET).
摘要:
A plasma containing 5–10% oxygen and 90–95% of an inert gas strips photoresist from over a low-k dielectric material formed on or in a semiconductor device. The inert gas may be nitrogen, hydrogen, or a combination thereof, or it may include at least one of nitrogen, hydrogen, NH3, Ar, He, and CF4. The operating pressure of the plasma may range from 1 millitorr to 150 millitor. The plasma removes photoresist, the hard skin formed on photoresist during aggressive etch processes, and polymeric depositions formed during etch processes. The plasma strips photoresist at a rate sufficiently high for production use and does not appreciably attack carbon-containing low-k dielectric materials. An apparatus including a plasma tool containing a semiconductor substrate and the low oxygen-content plasma, is also provided.