摘要:
A lithographic patterning device deformation monitoring apparatus (38) comprising a radiation source (40), an imaging device (42), and a processor (50). The radiation source being configured to direct a plurality of beams of radiation (41) with a predetermined diameter towards a lithographic patterning device (MA) such that they are reflected by the patterning device. The imaging detector configured to detect spatial positions of the radiation beams (41′) after they have been reflected by the patterning device. The processor configured to monitor the spatial positions of the radiation beams and thereby determine the presence of a patterning device deformation. The imaging detector has an collection angle which is smaller than a minimum angle of diffraction of the radiation beams.
摘要:
A detector detects radiation from a mask to form an image, but the focal plane of the image is in front of the mask. Any particles arranged on the mask will be in focus. However, the pattern on the mask will be out of focus. It is therefore possible to detect the existence and location of particles on a mask having an arbitrary pattern. The depth of field of the detector is small and the focal plane is no further from the surface of the patterning device than two times the depth of field.
摘要:
A detector detects radiation from a mask to form an image, but the focal plane of the image is in front of the mask. Any particles arranged on the mask will be in focus. However, the pattern on the mask will be out of focus. It is therefore possible to detect the existence and location of particles on a mask having an arbitrary pattern. The depth of field of the detector is small and the focal plane is no further from the surface of the patterning device than two times the depth of field.
摘要:
An article such as an EUV lithography reticle is inspected to detect contaminant particles. The method comprises applying a fluorescent dye material to the article, illuminating the article with radiation at wavelengths suitable for exciting the fluorescent dye, monitoring the article for emission of second radiation by the fluorescent dye at a wavelength different from the first radiation, and generating a signal representing contamination in the event of detecting the second radiation. In one example, measures such as low-affinity coatings may be applied to the reticle to reduce affinity for the dye molecules, while the dye molecules will bind by physical or chemical adsorption to the contaminant particles. Dyes may be selected to have fluorescence behavior enhanced by hydrophobicity or hydrophilicity, and contaminant surfaces treated by buffer coatings accordingly.
摘要:
An EUV lithography reticle is inspected to detect contaminant particles. The inspection apparatus comprises illumination optics with primary radiation. An imaging optical system with plural branches is arranged to form and detect a plurality of images, each branch having an image sensor and forming its image with a different portion of radiation received from the illuminated article. A processor combines information from the detected images to report on the presence and location of contaminant particles. In one or more branches the primary radiation is filtered out, so that the detected image is formed using only secondary radiation emitted by contaminant material in response to the primary radiation. In a dark field imaging branch using the scattered primary radiation, a spatial filter blocks spatial frequency components associated with periodic features of the article under inspection, to allow detection of particles which cannot be detected by secondary radiation.
摘要:
In an aspect, an inspection method for detecting the presence or absence of a defect on an object, the object comprising a recess having a physical depth, is disclosed. The method includes directing radiation at the object, the radiation having a wavelength that is substantially equal to twice an optical depth of the recess, detecting radiation that is re-directed by the object or a defect on the object, and determining the presence or absence of a defect from the re-directed radiation.
摘要:
Embodiments of the invention relate to a system for contactless cleaning of an object surface, a lithographic apparatus including the system, and a method of manufacturing a device. The system may include a He plasma source contained in a chamber and a control unit constructed to modify plasma parameters in use, such as the electron energy distribution of the plasma for causing an increase in formation of He metastables without modifying operational parameters of the plasma source. The control unit may include an electrical biasing unit constructed to apply a positive bias voltage to the object, for attracting free electrons from the plasma. The system may include a supplementary gas source, which may be either pre-mixed with He or be supplied from a further gas source. The supplementary gas may be selected based on a pre-knowledge on a type of particles to be expected on the surface of the object.
摘要:
An imprint lithography method is disclosed for reducing a difference between an intended topography and an actual topography arising from a part of a patterned layer of fixed imprintable medium. The method involves imprinting an imprint lithography template into a layer of flowable imprintable medium to form a patterned layer in the imprintable medium, and fixing the imprintable medium to form a patterned layer of fixed imprintable medium. Local excitation is applied to the part of the patterned layer to adjust a chemical reaction in the part of the patterned layer to reduce the difference between the intended topography and the actual topography arising from the part of the fixed patterned layer of imprintable medium when this is subsequently used as a resist for patterning the substrate. An imprint medium suitable for imprint lithography with the method is also disclosed.
摘要:
A lithographic apparatus and device manufacturing method makes use of a liquid confined in a reservoir between the projection system and the substrate. Bubbles forming in the liquid from dissolved atmospheric gases or from out-gassing from apparatus elements exposed to the liquid are detected and/or removed so that they do not interfere with exposure and lead to printing defects on the substrate. Detection may be carried out by measuring the frequency dependence of ultrasonic attenuation in the liquid and bubble removal may be implemented by degassing and pressurizing the liquid, isolating the liquid from the atmosphere, using liquids of low surface tension, providing a continuous flow of liquid through the imaging field, and/or phase shifting ultrasonic standing-wave node patterns.
摘要:
A lithographic system includes a source configured to generate a radiation, the source including a cathode and an anode, the cathode and the anode configured to create a discharge in a fuel located in a discharge space so as to generate a plasma, the discharge space including, in use, a substance configured to adjust radiation emission by the plasma so as to control a volume defined by the plasma; a pattern support configured to hold a patterning device, the patterning device configured to pattern the radiation to form a patterned beam of radiation; a substrate support configured to support a substrate; and a projection system configured to project the patterned beam of radiation onto the substrate.