Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
According to one embodiment, a method for transmitting, by a user equipment (UE), information in a wireless communication system includes: determining a first information sequence based on a first cyclically shifted base sequence and a first orthogonal sequence by using a first physical uplink control channel (PUCCH) resource for a first antenna, wherein the first PUCCH resource is obtained based on a channel control element (CCE) index related to a physical downlink control channel (PDCCH) and a parameter configured by a higher layer; determining a second information sequence based on a second cyclically shifted base sequence and a second orthogonal sequence by using a second PUCCH resource for a second antenna, wherein the second PUCCH resource is obtained by adding an offset to the first PUCCH resource; transmitting the first information sequence via the first antenna; and transmitting the second information sequence via the second antenna.
Abstract:
A method for transmitting a signal via physical uplink control channel (PUCCH) in a wireless communication system and an apparatus for performing the method are provided. Control information bits are modulated to generate N1 modulation symbols, wherein N1 is twice a number of subcarriers in one resource block (RB). The modulation symbols are spread by using various orthogonal codes to generate a plurality of sequences and the generated plurality of sequences are transmitted using different slots of a subframe through different antenna ports, each sequence of the plurality of sequences being mapped on a corresponding single carrier frequency division multiple access symbol in a corresponding slot.
Abstract:
A method and an apparatus of transmitting information in a wireless communication system are provided. The method includes transmitting information based on a first resource index through a first antennae and transmitting the information based on a second resource index through a second antennae.
Abstract:
A method for receiving data by a relay station (RS) in a wireless communication system includes: receiving radio resource allocation information via an R-PDCCH (R-Physical Downlink Control Channel); and receiving data from a base station (BS) via an R-PDSCH (R-Physical Downlink Shared Channel) indicated by the radio resource allocation information, wherein the radio resource allocation information includes information regarding an allocation of resource blocks in a frequency domain and information regarding an allocation of OFDM symbols in a time domain. Since the radio resource allocation information providing information regarding a time relationship between a control channel transmitted by the BS to a UE and a control channel transmitted by the RS to a UE connected to the RS is provided, the RS can reliably receive a signal transmitted from the BS in a backhaul link between the BS and the RS in a wireless communication system including the RS.
Abstract:
A method for mapping, by a base station, a channel state information reference signal (CSI RS) in a wireless communication system, the method comprising: generating the CSI for eight antenna ports; selecting a resource element (RE) set from a plurality of RE sets in a subframe using an extended cyclic prefix (CP), wherein the selected RE set includes four pairs of REs in consecutive orthogonal frequency division multiplexing (OFDM) symbols, and wherein the four pairs of REs are separated from each other by constant subcarrier spacing in the consecutive OFDM symbols; and mapping the CSI RS for the eight antenna ports to the selected RE set.
Abstract:
A method of allocating control information in a wireless communication system is provided. The method includes: allocating essential control information of a first system to a first sub-frame in a frame including a plurality of sub-frames each of which comprises a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and allocating essential control information of a second system to an nth sub-frame in a fixed position from the first sub-frame (where n is an integer satisfying n>1). Accordingly, in a frame supporting heterogeneous systems, essential control information can be fixedly allocated to a specific position while maintaining the number of system switching points, at which switching occurs between the systems, to one even if a radio resource allocation amount changes between the systems, and thus the essential control information that must be received by all user equipments can be effectively provided without the increase of overhead.
Abstract:
A method of activating or deactivating frequency resources at a terminal configured with a primary frequency resource and one or more non-primary frequency resources in a wireless communication system, and the terminal are discussed. The method according to one embodiment includes receiving a medium access control (MAC) signal for activating the one or more non-primary frequency resources; activating the one or more non-primary frequency resources; and deactivating the one or more non-primary frequency resources on expiry of a specific time period configured by radio resource control (RRC) signaling, the specific time period being for which of the one or more non-primary frequency resources are activated.
Abstract:
A method for wireless communication supporting uplink and downlink multi carriers Includes performing initial access through one of at least two downlink component carriers among multiple downlink component carriers including the at least two downlink component carriers through which the user equipment is allowed to perform the initial access; and transmitting via an uplink component carrier allocated to the user equipment by using a carrier identifier, wherein the carrier identifier is applied to the uplink component carrier and is obtained from the downlink component carrier through which the initial access is performed, and wherein the system pre-defines one-to-one correspondence between multiple downlink component carriers and multiple uplink component carriers, and wherein the downlink component carrier through which the initial access is performed and the uplink component carriers allocated to the user equipment do not match the one-to-one correspondence pre-defined by the system.
Abstract:
According to one embodiment of the present invention, the method for transmitting control information from a relay node to a base station on a backhaul link comprises the steps of: determining whether one time slot of a backhaul uplink subframe from the relay node to the base station is a first type slot having transmitted symbol with guard time set or a second type slot without guard time set; diffusing the control information in a time domain using a first length sequence for the first type slot or a second length sequence for the second type slot; mapping the diffused control information on at least one slot from the first type slot or the second type slot; and transmitting the backhaul uplink subframe having more than one slot from the first type slot or the second type slot wherein the control information is mapped.