Abstract:
The present invention relates to a method for transceiving a signal in a wireless communication system. A method for transceiving a signal in a wireless communication system according to one embodiment of the present invention comprises the steps of: transmitting a downlink signal from a base station to a terminal; receiving an uplink signal transmitted from the terminal; and cancelling a self-interference signal on the basis of the transceived downlink signal or the uplink signal, wherein the transmission periods for the downlink signal and the uplink signal comprise dedicated transmission periods, and in the dedicated transmission period, signal transmission periods of the base station and the terminal are differentiated.
Abstract:
The present invention relates to a wireless communication system and, more particularly, to a method and device for compressing and feeding back channel information in a wireless communication system supporting a multi-input multi-output (MIMO) scheme. A method for feeding back channel information by a terminal in a wireless communication system supporting a MINO scheme, according to one embodiment of the present invention, can comprise the steps of: calculating a channel matrix on the basis of a reference signal received from a base station; calculating a first valid channel vector by using a reception weight vector and the channel matrix; and calculating a second valid channel vector by setting a coefficient corresponding to each basis vector included in a basis matrix as 0 if the coefficient is equal to or less than a threshold when the first valid channel vector is factored by the basis matrix.
Abstract:
A method for transmitting signals at a User Equipment (UE) in a multi-antenna wireless communication system is discussed. The method includes receiving an uplink grant from a Base Station (BS); transmitting transport blocks and Reference Signals (RSs) for the transport blocks via a plurality of layers based on the uplink grant to the BS; receiving Negative ACKnowledgment (NACK) information for at least one transport block among the transport blocks from the BS; and retransmitting the at least one transport block and the RS for the at least one transport block via at least one layer to the BS.
Abstract:
A method for supporting communication using two or more heterogeneous radio access technologies (RAT) includes the steps of: the terminal receiving a first message that includes whether to provide support to simultaneous access two or more RATs and parameters requesting that a notification be provided for the supported RAT from a base station in a first RAT network supporting a first RAT; transmitting, to the base station in the first RAT network, a second message including an indicator indicating whether to support simultaneous access to the two or more RAT networks and information on a supported RAT network type in response to the first message, wherein the supported second RAT network type corresponds to a network that is different from the first RAT network.
Abstract:
The present invention relates to a wireless communication system and, more particularly, to a method and device for compressing and feeding back channel information in a wireless communication system supporting a multi-input multi-output (MIMO) scheme. A method for feeding back channel information by a terminal in a wireless communication system supporting a MINO scheme, according to one embodiment of the present invention, can comprise the steps of: calculating a channel matrix on the basis of a reference signal received from a base station; calculating a first valid channel vector by using a reception weight vector and the channel matrix; and calculating a second valid channel vector by setting a coefficient corresponding to each basis vector included in a basis matrix as 0 if the coefficient is equal to or less than a threshold when the first valid channel vector is factored by the basis matrix.
Abstract:
A method for supporting communication using two or more heterogeneous radio access technologies (RAT) can include the steps of: receiving a first message requesting that notification be provided as to whether to support simultaneous access to two or more RATs from a base station in a first communication network supporting a first RAT; and transmitting, to the base station in the first communication network, a second message including an indicator indicating whether to support simultaneous access to the two or more RATs in response to the first message.
Abstract:
Disclosed herein is a method of transceiving a signal between a transmitter and a receiver in a wireless communication system. The method includes transceiving the signal in units of a subframe including a plurality of symbols. Each of the plurality of symbols includes a valid symbol and a cyclic prefix, and a length of the cyclic prefix is changed according to a distance between the transmitter and the receiver.
Abstract:
A method and apparatus for switching connection in a wireless communication system is provided. A device receives a base station-to-device (B2D) switch request message or an unsolicited B2D switch response message from a base station. The B2D switch request message or the unsolicited B2D switch response message include information on at least one of a target device, a switch unit, target D2D connection/link identifier(s), an enhanced packet system (EPS) bearer identity, a data radio bearer (DRB) identity, a radio link control (RLC) configuration, a logical channel identity, and when to switch from a device-to-device (D2D) connection to a B2D connection.
Abstract:
A method and apparatus for performing effective feedback in a wireless communication system supporting multiple antennas. A method for transmitting CSI of downlink transmission via uplink in a wireless communication system includes transmitting a joint-coded rank indicator (RI) and a first wideband (WB) precoding matrix indicator (PMI) at a first subframe, and transmitting a wideband channel quality indicator (WB CQI) and a second WB PMI at a second subframe. A user equipment (UE) preferred precoding matrix is indicated by a combination of the first PMI and the second PMI. If the RI is Rank-1 or Rank-2, the first PMI indicates one of subsets each having 8 indexes from among 16 indexes of the first PMI of a precoding codebook.
Abstract:
The present invention relates to a method for a terminal to perform a handover in a cloud radio access network (C-RAN), including the steps of: receiving information on at least one candidate remote radio head (RRH); measuring the strength of received signals from at least one candidate RRH and a serving cell for the terminal; and, when the strength of the received signals from the candidate RRH and the serving cell of the terminal satisfy a predetermined relationship according to the measured result, transmitting feedback information, including the measured result, to the candidate RRH.