摘要:
A perpendicular magnetic recording (PMR) head is fabricated with a pole tip shielded laterally by a separated pair of side shields and shielded from above by an upper shield. The side shields are formed by a RIE process using specific gases applied to a shield layer through a masking layer formed of material that has a slower etch rate than the shield material. A masking layer of Ta, Ru/Ta, TaN or Ti, formed on a shield layer of NiFe and using RIE gases of CH3OH, CO or NH3 or their combinations, produces the desired result. The differential in etch rates maintains the opening dimension within the mask and allows the formation of a wedge-shaped trench within the shield layer that separates the layer into two shields. The pole tip is then plated within the trench and, being aligned by the trench, acquires the wedge-shaped cross-section of the trench. An upper shield is then formed above the side shields and pole.
摘要:
A laminated main pole layer is disclosed in which a non-AFC scheme is used to break the magnetic coupling between adjacent high moment layers and reduce remanence in a hard axis direction while maintaining a high magnetic moment and achieving low values for Hch, Hce, and Hk. An amorphous material layer with a thickness of 3 to 20 Angstroms and made of an oxide, nitride, or oxynitride of one or more of Hf, Zr, Ta, Al, Mg, Zn, or Si is inserted between adjacent high moment stacks. The laminated structure also includes an alignment layer below each high moment layer within each stack. In one embodiment, a Ru coupling layer is inserted between two high moment layers in each stack to introduce an AFC scheme. An uppermost Ru layer is used as a CMP stop layer. A post annealing process may be employed to further reduce the anisotropy field (Hk).
摘要:
A perpendicular magnetic recording (PMR) head with single or double coil layers has a small write shield stitched onto a main write shield. The stitched shield allows the main write pole to produce a vertical write field with sharp vertical gradients that is reduced on both sides of the write pole so that adjacent track erasures are eliminated. From a fabrication point of view, both the main pole and the stitched shield are defined and formed using a single photolithographic process, a trim mask and CMP lapping process so that the main shield can be stitched onto a self-aligned main pole and stitched shield.
摘要:
A perpendicular magnetic recording (PMR) head with single or double coil layers has a small write shield stitched onto a main write shield. The stitched shield allows the main write pole to produce a vertical write field with sharp vertical gradients that is reduced on both sides of the write pole so that adjacent track erasures are eliminated. From a fabrication point of view, both the main pole and the stitched shield are defined and formed using a single photolithographic process, a trim mask and CMP lapping process so that the main shield can be stitched onto a self-aligned main pole and stitched shield.
摘要:
For high track density recording, tighter reader and writer track width control are essential. This has been achieved by using the write gap layer as the plating seed on which the upper pole was electro-formed so that the width of the GMR pedestal serves to define the device's write track width.
摘要:
A PMR write head has a stitched shield formation which results in a strong perpendicular write field with sharp vertical gradients. The shape of the stitched shield is determined by two design parameters, d=½(WSWSLE−WMPTE), and TSWS, where WSWSLE is the width of the leading edge of the stitched shield in the ABS plane, WMPTE is the width of the trailing edge of the main magnetic pole in the ABS plane and TSWS is the thickness of the stitched shield. By a proper choice of these parameters, the write field of the head is sharply limited in the cross-track direction, so that adjacent track erasures are eliminated.
摘要翻译:PMR写头具有缝合的屏蔽结构,其形成具有尖锐垂直梯度的强垂直写入场。 缝合屏蔽的形状由两个设计参数d =½(W> SWSLE-> W> MP MP TE TE TE TE SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB and and and and and and and and) W SHSLE SUB>是ABS平面中缝合屏蔽的前缘的宽度,W> MPTE SUB>是ABS平面中主磁极的后缘的宽度 而T SWS SUB>是缝合屏蔽的厚度。 通过这些参数的适当选择,头部的写入场在交叉轨道方向上被大大限制,从而消除了相邻的轨迹擦除。
摘要:
Within a method for forming a magnetic transducer head there is first provided a substrate having formed thereover a lower magnetic pole layer in turn having formed thereupon a gap filling layer which is substantially planar. There is then formed upon the gap filling layer a patterned upper magnetic pole tip layer which serves as an etch mask layer for forming from the gap filling layer and the lower magnetic pole layer a patterned gap filling layer and an etched lower magnetic pole layer having a lower magnetic pole tip integral thereto, while simultaneously forming an etched patterned upper magnetic pole tip layer from the patterned upper magnetic pole tip layer. There is then formed upon the etched patterned upper magnetic pole tip layer and the etched lower magnetic pole layer a backfilling insulator layer to a thickness greater than a thickness of the etched patterned upper magnetic pole tip layer plus a thickness of the patterned gap filling layer plus a thickness of the lower magnetic pole tip. There is then planarized the backfilling insulator layer to form a patterned planarized backfilling insulator layer an exposed upper surface of which is coplanar with an exposed upper surface of the etched patterned upper magnetic pole tip layer. Finally, there is then formed a patterned upper magnetic pole layer contacting the exposed upper surface of the etched patterned upper magnetic pole tip layer.
摘要:
A method of for aligning step and repeat reticle images for 2 adjacent sliders for magnetoresistive (MR) devices. The invention forms 3 wafer alignment targets for two adjacent sliders . The 3 wafer alignment targets are used to align adjacent reticle exposure fields. An novel common alignment target is between the two sliders. The stepper alignment system uses the wafer alignment target placed in the field stitch area between two adjacent fields and the alignment target for that particular field to align the reticle. The method includes: forming (1) a first wafer alignment target in the first slider area; (2) a second wafer alignment target in the second slider area; and (3) a center wafer alignment target between the first and the second wafer alignment targets. Using a stepper, exposing the first slider area with the reticle image field. The first reticle image field having spaced first and second reticle alignment keys. The first alignment key is aligned with the first wafer alignment target and the second reticle alignment key is aligned with the center alignment target. Next, stepping and exposing the second slider area with a second reticle image field by aligning a first reticle alignment key with the center wafer alignment target and aligning the second reticle alignment key of the second reticle image field with the second wafer alignment target.
摘要:
A microwave assisted magnetic recording writer is disclosed with an octagonal write pole having a top portion including a trailing edge that is self aligned to a spin transfer oscillator (STO). Leading and trailing edges are connected by two sidewalls each having three sections. A first section on each side is coplanar with the STO sidewalls and is connected to a sloped second section at a first corner. Each second section is connected to a third section at a second corner where the distance between second corners is greater than the distance between first corners. A method of forming the writer begins with a trapezoidal shaped write pole in an insulation layer. Two ion beam etch (IBE) steps are used to shape top and middle portions of the write pole and narrow the pole width to
摘要:
A perpendicular magnetic recording (PMR) head is fabricated with a tapered main pole having a variable thickness. The tapered portion of the pole is at the ABS tip and it can be formed by bevels at the leading or trailing edges or both. The taper terminates to form a region with a maximum thickness, t1, which extends for a certain distance proximally. Beyond this region of maximum thickness t1, the pole is then reduced to a constant minimum thickness t2. A yoke is attached to this region of constant minimum thickness. This pole design requires less flux because of the thinner region of the pole where it attaches to the yoke, but the thicker region just before the tapered ABS provides additional flux to drive the pole just before the ABS, so that high definition and field gain is achieved, yet fringing is significantly reduced.