摘要:
A MOS power device having: a body; gate regions on top of the body and delimiting therebetween a window; a body region, extending in the body underneath the window; a source region, extending inside the body region throughout the width of the window; body contact regions, extending through the source region up to the body region; source contact regions, extending inside the source region, at the sides of the body contact regions; a dielectric region on top of the source region; openings traversing the dielectric region on top of the body and source contact regions; and a metal region extending above the dielectric region and through the first and second openings.
摘要:
MOS-gated power device including a plurality of elementary functional units, each elementary functional unit including a body region of a first conductivity type formed in a semiconductor material layer of a second conductivity type. A plurality of doped regions of a first conductivity type is formed in the semiconductor material layer, each one of the doped regions being disposed under a respective body region and being separated from other doped regions by portions of the semiconductor material layer.
摘要:
A vertical-conduction and planar-structure MOS device having a double thickness gate oxide includes a semiconductor substrate including spaced apart active areas in the semiconductor substrate and defining a JFET area therebetween. The JFET area also forms a channel between the spaced apart active areas. A gate oxide is on the semiconductor substrate and includes a first portion having a first thickness on the active areas and at a periphery of the JFET area, and a second portion having a second thickness on a central area of the JFET area. The second thickness is greater than the first thickness. The JFET area also includes an enrichment region under the second portion of the gate oxide.
摘要:
A process for manufacturing high-density MOS-technology power devices includes the steps of: forming a conductive insulated gate layer on a surface of a lightly doped semiconductor material layer of a first conductivity type; forming an insulating material layer over the insulated gate layer; selectively removing the insulating material layer and the underlying insulated gate layer to form a plurality of elongated windows having two elongated edges and two short edges, delimiting respective uncovered surface stripes of the semiconductor material layer; implanting a high dose of a first dopant of the first conductivity type along two directions which lie in a plane transversal to said elongated windows and orthogonal to the semiconductor material layer surface, and which are substantially symmetrically tilted at a first prescribed angle with respect to a direction orthogonal to the semiconductor material layer surface, the first angle depending on the overall thickness of the insulated gate layer and of the insulating material layer to prevent the first dopant from being implanted in a central stripe of said uncovered surface stripes, to form pairs of heavily doped elongated source regions of the first conductivity type which extend along said two elongated edges of each elongated window and which are separated by said central stripe; implanting a low dose of a second dopant of a second conductivity type along two directions which lie in said plane, and which are substantially symmetrically tilted of a second prescribed angle with respect to said orthogonal direction, to form doped regions of the second conductivity type each comprising two lightly doped elongated channel regions extending under the two elongated edges of each elongated window; implanting a high dose of a third dopant of the second conductivity type substantially along said orthogonal direction, the insulating material layer acting as a mask, to form heavily doped regions substantially aligned with the edges of the elongated windows.
摘要:
A MOS technology power device comprises a semiconductor substrate, a semiconductor layer of a first conductivity type superimposed over the semiconductor substrate, an insulated gate layer covering the semiconductor layer, a plurality of substantially rectilinear elongated openings parallel to each other in the insulated gate layer, a respective plurality of elongated body stripes of a second conductivity type formed in the semiconductor layer under the elongated openings, source regions of the first conductivity type included in the body stripes and a metal layer covering the insulated gate layer and contacting the body stripes and the source regions through the elongated openings. Each body stripe comprises first portions substantially aligned with a first edge of the respective elongated opening and extending under a second edge of the elongated opening to form a channel region, each first portion including a source region extending substantially from a longitudinal axis of symmetry of the respective elongated opening to the second edge of the elongated opening, and second portions, longitudinally intercalated with the first portions, substantially aligned with the second edge of the elongated opening and extending under the first edge of the elongated opening to form a channel region, each second portion including a source region extending substantially from the longitudinal axis of symmetry to the first edge of the elongated opening, the first portions and second portions of the body stripes being respectively aligned in a direction transversal to the longitudinal axis.
摘要:
A semiconductor power device comprising an insulated gate bipolar transistor, of the type which comprises a semiconductor substrate with a first type of conductivity and an overlying epitaxial layer with a second type of conductivity, opposite from the first, and whose junction to the substrate forms the base/emitter junction of the bipolar transistor, has the junction formed by a layer of semiconductor material with conductivity of the second type but a higher concentration of dopant than that of the epitaxial layer. Furthermore, the device has the epitaxial layer with conductivity of the second type provided with at least two zones at different dopant concentrations, namely a first lower zone being part of the junction and having a higher dopant concentration, and a second upper zone having a lower concentration.
摘要:
A fabrication method for high voltage power devices with at least one deep edge ring includes the steps of growing a lightly doped N-type epitaxial layer on a heavily doped N-type substrate, growing an oxide on the upper portion of the epitaxial layer, masking and then implanting boron ions, etching the oxide to expose regions for aluminum ion implantation, forming a layer of preimplantation oxide, masking of the body regions with a layer of photosensitive material and implanting aluminum ions, and a single thermal diffusion process forming a layer of thermal oxide on the epitaxial layer and simultaneously forming at least one deep aluminum ring and an adjacent body region doped with boron.
摘要:
A MOS technology power device comprises a semiconductor material layer of a first conductivity type, a plurality of elementary functional units, a first insulating material layer placed above the semiconductor material layer and a conductive material layer placed above the first insulating material layer. Each elementary functional unit includes an elongated body region of a second conductivity type formed in the semiconductor material layer. Each elementary functional unit further includes a first elongated window in the conductive material layer extending above the elongated body region. Each elongated body region includes a source region doped with dopants of the first conductivity type, intercalated with a portion of the elongated body region wherein no dopant of the first conductivity type are provided. The MOS technology power device further includes a second insulating material layer disposed above the conductive material layer and disposed along elongated edges of the first elongated window. The second insulating material layer includes a second elongated window extending above each elongated body region. The second insulating material layer seals the edges of the conductive material layer from a source metal layer disposed over the second insulating material layer. The source metal layer contacts each body region and each source region through each second elongated window along the length of the elongated body region.
摘要:
A MOS-gated power device integrated structure comprises a plurality of elementary units formed in a semiconductor material layer of a first conductivity type. Each elementary unit is formed in a body stripe of a second conductivity type. There are a plurality of body stripes of the second conductivity type extending substantially in parallel to each other and at least one source region of the first conductivity type disposed within each body stripe. A conductive gate layer is insulatively disposed over the semiconductor material layer between the body stripes in the form of a first web structure. A second web structure of the second conductivity type is formed in the semiconductor material layer and comprises an annular frame portion surrounding the plurality of body stripes and at least one first elongated stripe extending between two sides of the annular frame portion in a direction substantially orthogonal to the body stripes and that is merged at each end with the annular frame portion. The body stripes are divided by the at least one first elongated stripe into at least two groups of body stripes, wherein one end of each body stripe is merged with the annular frame portion of the second conductivity type and the other end is merged with the at least one first elongated stripe. A conductive gate finger is insulatively disposed above the first elongated stripe and is part of the first web structure. A conductive gate ring surrounds the conductive gate layer and the conductive gate finger and completes the first web structure. A metal gate finger is disposed above the conductive gate finger and is merged at its ends with a metal gate ring structure disposed above the conductive gate ring to provide a third web structure. Source metal plates cover the at least two groups of body stripes and contact each source region and each body stripe to form a source electrode of the power device. A bottom surface of the semiconductor material layer forms a drain of the power device.
摘要:
A MOS technology power device comprises a semiconductor material layer of a first conductivity type, a plurality of elementary functional units, a first insulating material layer placed above the semiconductor material layer and a conductive material layer placed above the first insulating material layer. Each elementary functional unit includes an elongated body region of a second conductivity type formed in the semiconductor material layer. Each elementary functional unit further includes a first elongated window in the conductive material layer extending above the elongated body region. Each elongated body region includes a source region doped with dopants of the first conductivity type, intercalated with a portion of the elongated body region wherein no dopant of the first conductivity type are provided. The MOS technology power device further includes a second insulating material layer disposed above the conductive material layer and disposed along elongated edges of the first elongated window. The second insulating material layer includes a second elongated window extending above each elongated body region. The second insulating material layer seals the edges of the conductive material layer from a source metal layer disposed over the second insulating material layer. The source metal layer contacts each body region and each source region through each second elongated window along the length of the elongated body region.