Abstract:
Provided are a method of producing an aluminate fluorescent material, an aluminate fluorescent material and a light emitting device. The production method includes heat-treating a mixture prepared by mixing a compound containing at least one alkaline earth metal element selected from the group consisting of Ba, Sr and Ca, a Mg-containing compound not acting as a flux, a Mn-containing compound, an Al-containing compound, a first flux containing at least one alkali metal element selected from the group consisting of Na, K, Rb and Cs, and a Mg-containing second flux to give an aluminate fluorescent material.
Abstract:
A nitride fluorescent material containing at least one element selected from the group consisting of Ca, Sr, Ba and Mg, at least one element selected from the group consisting of Li, Na and K, at least one element selected from the group consisting of Eu, Ce, Tb and Mn, Al and N is provided, wherein when the maximum value of absorbance in 450 cm−1 or more and less than 900 cm−1 is taken as 1 in an FT-IR spectrum, an integrated value Z1 of a domain surrounded by a base line A connecting absorbance values at 1,200 cm−1 and 1,600 cm−1 and an absorbance spectrum of 1,200 cm−1 or more and less than 1,600 cm−1 is 4.0 or less, and/or an integrated value Z2 of a domain surrounded by a base line B connecting absorbance values at 2,700 cm−1 and 3,680 cm−1 and an absorbance spectrum of 2,700 cm−1 or more and less than 3,680 cm−1 is 5.0 or less.
Abstract:
Provided is an aluminate fluorescent material having a composition represented by the formula X1aMgbMncAldOa+b+c+1.5d, in which X1 is at least one element selected from the group consisting of Ba, Sr; and Ca, a, b, c, and d satisfy 0.5≦a≦1.0, 0.0≦b
Abstract:
Provided is an aluminate fluorescent material having a high emission intensity and having a composition containing a first element that contains one or more of Ba and Sr, and a second element that contains Mg and Mn. In the composition, when a molar ratio of Al is 10, a total molar ratio of the first element is a parameter a, a total molar ratio of the second element is a parameter b, a molar ratio of Sr is a product of a parameter m and the parameter a, a molar ratio of Mn is a product of a parameter n and the parameter b. The parameters a and b satisfy 0.5
Abstract:
A method of producing a nitride fluorescent material is provided. The nitride fluorescent material undergoes less change in chromaticity under a high-temperature and high-humidity condition and are excellent in durability. The nitride fluorescent material has a composition containing: at least one element selected from the group consisting of Ca, Sr, Ba, and Mg; at least one element selected from the group consisting of Li, Na, and K; at least one element selected from the group consisting of Eu, Ce, Tb, and Mn; Al; and N. The method includes: preparing a calcined product having the composition, bringing the calcined product in contact with a fluorine-containing substance, and heat-treating the calcined product at a temperature of 200° C. or more and 500° C. or less. A light emitting device using the nitride fluorescent material is also provided.
Abstract:
A method for producing β-sialon fluorescent material having excellent emission intensity is provided. The method for producing β-sialon fluorescent material includes providing a composition comprising silicon nitride that contains aluminium, an oxygen atom, and europium, heat treating the composition, and contacting the heat-treated composition with a basic substance.
Abstract:
A method of producing a nitride fluorescent material having a high light emission intensity and including a calcined product having a composition represented by formula MavMbwMcxMdyNz is provided. Ma is at least one element selected from Sr, Ca, Ba, and Mg; Mb is at least one element selected from Li, Na, and K; Mc is at least one element selected from Eu, Mn, Tb, and Ce; Md is at least one element selected from Al, B, Ga, and In; v, w, x, y, and z satisfy 0.8≦v≦1.1, 0.8≦w≦1.1, 0.001
Abstract:
A method for producing a β-sialon fluorescent material is provided. The method includes heat-treating a mixture containing an aluminium compound, a first europium compound, and silicon nitride to obtain a first heat-treated product; and heat-treating the first heat-treated product with a second europium compound in a rare gas atmosphere to obtain a second heat-treated product.
Abstract:
A method for producing a β-sialon fluorescent material superior in light emitting luminance is provided. The method includes heat-treating a first mixture containing an aluminum compound, a europium compound, and a first silicon oxynitride compound to obtain a first heat-treated product, and heat-treating a second mixture containing the first heat-treated product, an aluminum compound, a europium compound, and a second silicon oxynitride compound, which has a larger oxygen content than the first silicon oxynitride compound, to obtain a second heat-treated product.
Abstract:
A phosphor, which is represented by the general formula containing M, Ce, Pr, Si, and N, is provided. M is at least one element selected from the group consisting of La, Y, Tb and Lu. A molar ratio of M is greater than 2.0 and smaller than 3.5. A molar ratio of Ce is greater than 0 and smaller than 1.0. A molar ratio of Pr is greater than 0 and smaller than 0.05. A molar ratio of N is greater than 10 and smaller than 12, under the condition that a molar ratio of Si is set to 6. The phosphor further contains 10 to 10,000 ppm of fluorine.