Abstract:
A sintered electrode for a battery, the sintered electrode having a first surface positioned to face a current collector and a second surface positioned to face an electrolyte layer, such that the sintered electrode includes: a chalcogenide compound having at least one of an alkali metal or an alkaline earth metal; such that the sintered electrode has a thickness between the first surface and the second surface of 2 μm to 100 μm; and such that the sintered electrode has an open porosity of from 0.1% to 30%. A cathode for a battery, includes: a sintered electrode having a first surface and a second surface; such that the sintered electrode: has a thickness between the first surface and the second surface in a range of 2 μm to 100 μm, has a cross-sectional area of at least 3 cm2, and is a substrate of the battery.
Abstract:
A system, process and related sintered article are provided. The process includes supporting a piece of inorganic material with a pressurized gas and sintering the piece of inorganic material while supported by the pressurized gas by heating the piece of inorganic material to a temperature at or above a sintering temperature of the inorganic material such that the inorganic material is at least partially sintered forming the sintered article. The inorganic material is not in contact with a solid support during sintering. The sintered article, such as a ceramic article, is thin, has high surface quality, and/or has large surface areas.
Abstract:
A system, process and related sintered article are provided. The process includes supporting a piece of inorganic material with a pressurized gas and sintering the piece of inorganic material while supported by the pressurized gas by heating the piece of inorganic material to a temperature at or above a sintering temperature of the inorganic material such that the inorganic material is at least partially sintered forming the sintered article. The inorganic material is not in contact with a solid support during sintering. The sintered article, such as a ceramic article, is thin, has high surface quality, and/or has large surface areas.
Abstract:
Disclosed herein are methods for making a solid lithium ion electrolyte membrane, the methods comprising combining a first reactant chosen from amorphous, glassy, or low melting temperature solid reactants with a second reactant chosen from refractory oxides to form a mixture; heating the mixture to a first temperature to form a homogenized composite, wherein the first temperature is between a glass transition temperature of the first reactant and a crystallization onset temperature of the mixture; milling the homogenized composite to form homogenized particles; casting the homogenized particles to form a green body; and sintering the green body at a second temperature to form a solid membrane. Solid lithium ion electrolyte membranes manufactured according to these methods are also disclosed herein.
Abstract:
A W and Ga co-doped garnet batch composition or Ta and Ga co-doped garnet batch composition including: a source of elemental Li in from 41 to 56 mol %; a source of elemental La in from 25 to 28 mol %; a source of elemental Zr in from 13 to 17 mol %; and a source of elemental co-dopant comprising a mixture of: a first dopant compound having gallium in from 2 to 17 mol %, and a second dopant compound having tungsten or tantalum in from 0.8 to 5 mol %, based on a batch total of 100 mol %. Also disclosed is a method of making and using the W and Ga co-doped garnet composition or Ta and Ga co-doped garnet composition, as defined herein, in an energy storage device.
Abstract:
Embodiments are directed to glass frits containing phosphors that can be used in LED lighting devices and for methods associated therewith for making the phosphor containing glass frit and their use in glass articles, for example, LED devices.
Abstract:
A cathode current collector for a lithium-air battery includes a carbon-free, conductive, porous matrix. The matrix may include a metal boride, a metal carbide, a metal nitride, a metal oxide and/or a metal halide. Example matrix materials are antimony-doped tin oxide and titanium oxide. A carbon-free cathode exhibits improved mechanical and electrochemical properties including improved cycle life relative to conventional carbon-containing porous cathode current collectors.
Abstract:
Batteries include a cathode, an interlayer disposed on the cathode, a solid-state electrolyte disposed on the interlayer, and a lithium anode disposed on the solid-state electrolyte. The interlayer includes a deep-eutectic-solvent-based electrolyte including a lithium salt and a sulfone compound. Methods of forming a battery comprising disposing a deep-eutectic-solvent-based electrolyte comprising a lithium salt and a sulfone compound on a first major surface of a cathode. Methods further comprising disposing a solid-state electrolyte over the first major surface of the cathode. The deep-eutectic-solvent-based electrolyte is positioned between the cathode and the solid-state electrolyte.
Abstract:
Methods of making a sintered electrode comprise forming a slurry including 40 wt % to 75 wt % of a powder comprising a chalcogenide and at least one of an alkali metal or an alkaline earth metal, 1 wt % to 10 wt % of a binder, and 30 wt % to 50 wt % of a solvent. Methods include casting the slurry into a green tape. Methods include drying the green tape to form a dried green tape by removing at least a portion of the solvent. The dried green tape includes at most 10 wt % of organic material in the dried green tape. Methods include sintering the dried green tape at a temperature from 500° C. to 1350° C. for no more than 60 minutes to form the sintered electrode.
Abstract:
A solid garnet composition includes a bulk composition having a lithium garnet; and a surface composition having a protonated garnet on at least a portion of the exterior surface of the lithium garnet, such that the protonated garnet is uniformly disposed over the at least a portion of the exterior surface of the lithium garnet. A method of making a solid garnet composition includes pre-treating an air sensitive lithium-containing garnet with water to form a uniform protonated garnet surface composition; and contacting the uniform protonated garnet surface composition with an acid to form a porous uniform protonated garnet surface composition.