Abstract:
The method for transmitting and receiving data at a base station in a wireless communication system according to one embodiment of the present invention includes the steps of receiving a performance report from a terminal, determining whether the addition of a serving cell is necessary, when the addition of the serving cell is necessary, transmitting a request for receiving a cell identifying signal to one or more other base stations on the basis of the received performance report and transmitting a request for transmitting the cell identifying signal to the terminal. According to the embodiment, in a network in which a small cell and a macro cell are overlapped and operated, the terminal can minimize battery consumption and quickly recognize the small cell.
Abstract:
The present invention proposes a method of processing a buffer state report when a wireless communication system uses inter-eNB carrier aggregation technology. According to the present invention, a terminal may be provided with a proper amount of uplink resource allocations by notifying base stations of a buffer state.
Abstract:
A method and base station in a wireless communication system are provided. The method includes transmitting, to a terminal, system information including information associated with a sub-frame configuration of multimedia broadcast multicast service single frequency network (MBSFN) sub-frames, identifying whether the transmission mode of the terminal is a first transmission mode or a second transmission mode, transmitting, to the terminal, dedicated message including configuration information of the identified transmission mode of the terminal, transmitting, to the terminal, control information in a physical downlink control channel (PDCCH) and data in a physical downlink shared channel (PDSCH) in a first sub-frame of the MBSFN sub-frames, if the terminal is configured in the first transmission mode, and transmitting, to the terminal, the control information in the PDCCH and the data in the PDSCH in a second sub-frame of a non-MBSFN sub-frames, if the terminal is configured in the second transmission mode.
Abstract:
The present disclosure provides a method for cell reselection in a wireless communication system in which various radio access technologies (RATs) coexist with each other. In a wireless communication system in which heterogeneous networks coexist with each other, the method of cell reselection between heterogeneous networks for a user equipment may include: receiving a system information block (SIB) containing cell reselection parameters from a corresponding base station; checking whether cell reselection parameters based on a cell selection quality value (Squal) are configured in the received SIB; and performing, when cell reselection parameter based on Squal are not configured, cell reselection based on a cell selection receive level value (Srxlev). The present disclosure may prevent the user equipment from performing unnecessary cell reselection.
Abstract:
A method for activating/deactivating secondary carriers of a User Equipment (UE) in a mobile communication system supporting carrier aggregation is provided. The method comprises, receiving a control message including an activation/deactivation Control Element (CE) in a first sub-frame from a Base station, identifying an activation command or a deactivation command of at least one secondary carrier based on the control message, determining whether a current sub-frame is a second sub-frame or not, performing at least one first operation for the at least one secondary carrier in a second sub-frame, and performing, when the activation/deactivation CE indicates deactivation of the at least one secondary carrier, at least one second operation for the at least one secondary carrier no later than the second sub-frame.
Abstract:
The present invention pertains to a method and device for transmitting a control signal, and a method for a terminal to transmit a control signal according to one embodiment of the present invention can comprise: a step for sensing a forced termination in a first subframe during active time; and a step in which if the forced termination is sensed and if, in a second subframe among a pre-set number of subframes after the first subframe, Channel Quality Indicator (CQI) transmission via a Physical Uplink Control Channel (PUCCH) is set, and if neither one among Hybrid Automatic Repeat Request (HARQ) feedback transmission and Physical Uplink Shared Channel (PUSCH) transmission is set in the second subframe, the CQI transmission is executed via the PUCCH. The embodiment of the present invention enables power consumption by the terminal to be reduced.
Abstract:
A method and terminal in a wireless communication system are provided. The method includes receiving system information including information associated with a sub-frame configuration of a multimedia broadcast multicast service single frequency network (MBSFN) sub-frame, receiving dedicated message including information on configuration of a transmission mode of the terminal, detecting, if the terminal is configured in a first transmission mode, a physical downlink control channel (PDCCH) in a first sub-frame of the MBSFN sub-frame, and decoding a physical downlink shared channel (PDSCH) in the first sub-frame of the MBSFN sub-frame.
Abstract:
A method and terminal in a wireless communication system are provided. The method includes receiving system information including information associated with a sub-frame configuration of multimedia broadcast multicast service single frequency network (MBSFN) sub-frame, receiving dedicated message including information on configuration of a transmission mode of the terminal, if the terminal is configured in a first transmission mode, detecting a physical downlink control channel (PDCCH) in a sub-frame of the MBSFN sub-frame and decoding a physical downlink shared channel (PDSCH) in the sub-frame of the MBSFN sub-frame, and if the terminal is configured in a second transmission mode, detecting a PDCCH in a sub-frame of a non-MBSFN sub-frame and decoding a PDSCH in the sub-frame of the non-MBSFN sub-frame.
Abstract:
A method for activating/deactivating secondary carriers of a User Equipment (UE) in a mobile communication system supporting carrier aggregation is provided. The method comprises, receiving a control message including an activation/deactivation Control Element (CE) in a first sub-frame from a Base station, identifying an activation command or a deactivation command of at least one secondary carrier based on the control message, determining whether a current sub-frame is a second sub-frame or not, performing at least one first operation for the at least one secondary carrier in a second sub-frame, and performing, when the activation/deactivation CE indicates deactivation of the at least one secondary carrier, at least one second operation for the at least one secondary carrier no later than the second sub-frame.
Abstract:
The present invention relates to a method and an apparatus for controlling uplink transmission power of a user equipment. In the method, a serving base station receives from the user equipment a signal measurement report for a first neighboring base station transmitting the strongest signal to the user equipment, transmits, to the user equipment, a control signal including a path loss information for calculating the uplink transmission power, transmits, to the user equipment and the first neighboring base station scheduling information for the user equipment and receives, from the first neighboring base station, an uplink signal of the user equipment. According to the method, the uplink transmission power can be adjusted based on a pico base station close to the user equipment when the macro base station is a serving base station such that the amount of interference power of a multi cell may be minimized.