Abstract:
The present invention relates to a water-absorbing material obtainable by a process comprising the steps of: a) obtaining, optionally coated, post-crosslinked water-absorbing polymeric particles; b) exposing said particles of step a) to a vacuum-treatment, at a pressure of from 0.0001 mbar to 700 mbar; and c) optionally exposing said particles of step b) to a plasma-treatment, and processes for their production.
Abstract:
A process for producing water-absorbing polymer particles, wherein at least one aliphatic aldehyde or reaction product thereof with an aliphatic alcohol, an aliphatic amine, ammonia, a hypophosphite or a phosphite is added.
Abstract:
The present disclosure relates to an absorbent structure for use in a diaper for babies and infants, a feminine hygiene article and/or an incontinence article, said absorbent structure comprising a water-absorbing material, the water-absorbing material being obtainable by a process comprising the steps of A) treating a particulate, non-surface-crosslinked, water-absorbing polymer with a mixture comprising an aqueous solvent and at least one salt of a transition metal and B) irradiating the polymer treated according to A) with UV radiation, and to a process for its production.
Abstract:
An aqueous solution containing 10% by weight of acrylic acid and its conjugate base. The solution further contains, based on the amount of acrylic acid and its conjugate base: at least 50 ppm of propionic acid and its conjugate base; at least 200 ppm of formic acid and its conjugate base; at least 3000 ppm of acetic acid and it conjugate base; at most 10 ppm of benzoic acid and its conjugate base; at most 10 ppm of maleic anhydride, maleic acid, and their conjugate bases; at most 10 ppm of phthalic anhydride, phthalic acid, and their conjugate bases; at most 50 ppm of acrolein; at most 50 ppm of benzaldehyde; at most 50 ppm of 2-furaldehyde; and at least 20 mol % of at least one alkali metal cation. A process for preparing this solution and the use of this solution for preparation of a polymer by free-radical polymerization.
Abstract:
The present invention relates to an absorbent structure suitable in, or being an adult or infant diaper or feminine hygiene article, comprising a water-absorbing material comprising water-absorbing particles that comprise a film coating, comprising an elastic film-forming polymer and an antioxidant.The invention also relates to an absorbent structure comprising a water absorbent material obtainable by a process of: a) spray-coating water-absorbing polymeric particles with an elastic film-forming polymer in a fluidized bed reactor at a temperature in the range from 0° C. to 150° C. and b) heat-treatment of the coated polymeric particles at a temperature above 50° C., wherein in step a) and/or b) an antioxidant is added.
Abstract:
A process for producing odor-inhibiting water-absorbing polymer particles based on ethylenically unsaturated monomers bearing acid groups, wherein the polymer particles are coated with a chelating agent and a tannin.
Abstract:
A system for manufacturing a product receives a formulation specification that includes a plurality of ingredients for the product. The system further receives cost information for the ingredients and inventory information. The system then generates a least cost formulation for the product based on the formulation specification, cost information and inventory information.
Abstract:
A process for producing thermally surface postcrosslinked water-absorbing polymer particles, wherein the water-absorbing polymer particles are coated before, during or after the thermal surface postcrosslinking with at least one polyvalent metal salt, and the polyvalent metal salt comprises the anion of glycolic acid or the anion of a glycolic acid derivative.
Abstract:
Process for classifying a particulate water-absorbing resin using a sieving apparatus at a reduced pressure compared with the ambient pressure and a sieving apparatus for classifying a particulate water-absorbing resin at a reduced pressure compared with the ambient pressure.