摘要:
Disclosed is a carbon film which has optical characteristics of retaining a high transparency and being high in refractive index and low in double refractivity, is excellent in electric insulating performance, can be applied to various base materials with good adhesiveness, and can be formed at low temperature. Also disclosed is a laminate including a carbon film and a method for producing the laminate.
摘要:
An object of the present invention is to solve problems such as high temperature processing and long processing time, which are issues of formation of a graphene film by thermal CVD, thereby providing a technique of forming a transparent conductive carbon film using a crystalline carbon film formed at lower temperature within a short time using a graphene film, and the method of the present invention is characterized by setting the temperature of a base material to 500° C. or lower and the pressure to 50 Pa or less, and also depositing a transparent conductive carbon film on a surface of a base material by a microwave surface-wave plasma CVD method in a gas atmosphere in which an oxidation inhibitor as an additive gas for suppressing oxidation of the surface of the base material is added to a carbon-containing gas or a mixed a carbon-containing gas and an inert gas.
摘要:
An aligned double-walled carbon nanotube bulk structure composed of plural aligned double-walled carbon nanotubes and having a height of 0.1 μm or more and a double-walled carbon nanotube are produced by chemically vapor depositing (CVD) a carbon nanotube in the presence of a metal catalyst with controlled particle size and thickness, preferably in the presence of moisture. According to this, it is possible to provide a double-walled nanotube which is free from inclusion of the catalyst, has high purity, is easy to control the alignment and growth, is able to achieve the fabrication through the formation of a bulk structure and has excellent electron emission characteristic (particularly, a double-walled carbon nanotube bulk structure) and also to provide a production technology thereof.
摘要:
A carbon film including: carbon grains having substantially the same grain size in the range of 1 nm to 1,000 nm, and preferably in the range of 2 nm to 200 nm, in the thickness-wise direction of the carbon film; and an amorphous substance for suppressing generation of impurities accompanied by formation of the carbon grains and/or for suppressing growth of said carbon grains, the amorphous substance existing at least on the surfaces of the carbon grains in a grain boundary between the carbon grains and/or gaps between the carbon grains. Such a carbon film has excellent optical properties such as high transparency, a high refractive index and small birefringence, and exhibits excellent electrical insulation. Further, the carbon film can be coated on various substrates with high adhesion and can be formed at a low temperature. Therefore, the carbon film is extremely useful for application to an optical device, a wrist watch, an electronic circuit substrate, a grinding tool or a protection film.
摘要:
Provided is an X-ray analyzer capable of significantly suppressing an influence of an external magnetic field on a transition edge sensor (TES). The X-ray analyzer includes: a TES (7) for detecting energy of a received X-ray as a temperature change and outputting the temperature change as a current signal; a superconducting magnetic shield (8) which contains the TES (7) and enters a superconducting state; and a room temperature magnetic shield (9) which covers the superconducting magnetic shield (8) and performs external magnetic field shielding until the superconducting magnetic shield (8) enters the superconducting state, in which the superconducting magnetic shield (8) and the room temperature magnetic shield (9) are concentrically arranged to have a cylindrical shape.
摘要:
A method is provided for manufacturing a carbonaceous material in which fine carbon particles structured from clumps of numerous tube-shaped graphite sheets are aggregated, wherein the carbonaceous material can be readily obtained at a high yield and having a fine carbon particle-diameter distribution that is in a relatively narrow range.The present invention comprises a carbon ablation step performed in a neon-gas atmosphere within a chamber 10; and a cooling step for using the neon-gas atmosphere within the chamber to cool a gasified carbon (plume CP) generated in the ablation step. The carbonaceous material in which fine carbon particles are aggregated is obtained by performing the ablation step and the cooling step.
摘要:
Problem To provide a carbon film and a laminate having optical characteristics of retaining high transparency, having high refraction index and less double refractivity, being excellent in electric insulating property, being capable of being coated at good adhesion to various substrates, and being capable of being formed at a low temperature, and applications thereof. Means for Solving the Problem The invention relates to a carbon film which has an approximate spectrum curve obtainable by superimposing, on a peak fitting curve A at a Bragg's angle (2θ±0.3°) of 43.9°, a peak fitting curve B at 41.7° and a base line in an X-ray diffraction spectrum by a CuKa1 ray, and has a film thickness of from 2 mm to 100 μm. The intensity of the fitting curve B relative to the intensity of the fitting curve A is preferably from 5 to 90% in the approximated spectrum described above. In the carbon film, the Raman shift has a peak at a 1333±10 cm−1 in the Raman scattering spectrum, and the half-value width of the peak is from 10 to 40 cm−1. Further, the invention relates to a laminate characterized by disposing, on the substrate, a carbon aggregate film of 2 nm to 100 μm thickness comprising an aggregate of carbon particles having an approximate spectrum curve described above. Moreover, the invention relates to an optical device, optical glass, wrist watch, electronic circuit substrate, or grinding tool having the laminate described above.
摘要:
A carbon nanotube is contacted with a reactive substance which is a metal or a semiconductor. The reactive substance is heated to diffuse atoms of the reactive substance into the carbon nanotube so that the carbon nanotube is partially transformed or converted into carbide as a reaction product. Thus, a heterojunction of the reaction product and the carbon nanotube is formed. For example, the carbon nanotube (2) is contacted with a silicon substrate (1). The silicon substrate (1) is heated to cause solid-solid diffusion of Si. As a result, SiC (3) is formed as the heterojunction. At least a part of a filament material of a carbon nanotube is irradiated with electromagnetic wave to deform the filament material.
摘要:
A carbon nanotube is contacted with a reactive substance which is a metal or a semiconductor. The reactive substance is heated to diffuse atoms of the reactive substance into the carbon nanotube so that the carbon nanotube is partially transformed or converted into carbide as a reaction product. Thus, a heterojunction of the reaction product and the carbon nanotube is formed. For example, the carbon nanotube (2) is contacted with a silicon substrate (1). The silicon substrate (1) is heated to cause solid-solid diffusion of Si. As a result, SiC (3) is formed as the heterojunction. At least a part of a filament material of a carbon nanotube is irradiated with electromagnetic wave to deform the filament material.
摘要:
The invention provides a nanometer sized carbon tubule enclosing a foreign material except for carbon. The carbon tubule comprises a plurality of tubular graphite monoatomic sheets coaxially arranged. The foreign material is introduced through a top portion of the carbon tubule. The introduction of the foreign material is accomplished after forming an opening at the top portion of the carbon tubule either by contacting the foreign material with the top portion of the carbon tubule together with a heat treatment or by an evaporation of the foreign material on the top portion of the carbon tubule together with the heat treatment. The foreign material is introduced only in a center hollow space defined by an internal surface of the most inner tubular graphite monoatomic sheet.