摘要:
An apparatus for facilitating servicing of a liquid-cooled electronics rack is provided. The apparatus includes a coolant tank, a coolant pump in fluid communication with the coolant tank, multiple parallel-connected coolant supply lines coupling the coolant pump to a coolant supply port of the apparatus, and a coolant return port and a coolant return line coupled between the coolant return port and the coolant tank. Each coolant supply line includes a coolant control valve for selectively controlling flow of coolant therethrough pumped by the coolant pump from the coolant tank. At least one coolant supply line includes at least one filter, and one coolant supply line is a bypass line with no filter. When operational, the apparatus facilitates filling of coolant into a cooling system of a liquid-cooled electronics rack by allowing for selective filtering of coolant inserted into the cooling system.
摘要:
Apparatus and method are provided for cooling an electronic component. The apparatus includes a coolant-cooled structure in thermal communication with the component(s) to be cooled, and a coolant-to-refrigerant heat exchanger coupled in fluid communication with the coolant-cooled structure via a coolant loop to receive coolant from and supply coolant to the coolant-cooled structure. The apparatus further includes a refrigerant loop coupled in fluid communication with the coolant-to-refrigerant heat exchanger, and the heat exchanger cools coolant passing therethrough by dissipating heat from the coolant in the coolant loop to refrigerant in the refrigerant loop. A controllable coolant heater is associated with the coolant loop for providing an adjustable heat load on the coolant in the coolant loop to ensure at least a minimum heat load is dissipated from the coolant to the refrigerant passing through the heat exchanger.
摘要:
Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a refrigerant loop, a compressor coupled to the refrigerant loop, and a controllable thermoelectric array disposed in thermal communication with the refrigerant loop. Refrigerant flowing through the refrigerant loop facilitates dissipation of heat from the electronic component, and the thermoelectric array is disposed with a first portion of the refrigerant loop, residing upstream of the compressor, in thermal contact with a first side of the array, and a second portion of the refrigerant loop, residing downstream of the compressor, in thermal contact with a second side of the array. The thermoelectric array ensures that refrigerant in the refrigerant loop entering the compressor is in a superheated thermodynamic state by transferring heat from refrigerant passing through the second portion to refrigerant passing through the first portion of the refrigerant loop.
摘要:
Cooling apparatuses and methods are provided for immersion-cooling of an electronic subsystem of an electronics rack. The cooling apparatuses include a housing at least partially surrounding and forming a sealed compartment about the electronic subsystem and a dielectric fluid disposed within the sealed compartment, with the electronic subsystem being immersed within the dielectric fluid. A liquid-cooled vapor condenser is provided which includes a plurality of thermally conductive condenser fins extending within the sealed compartment. The condenser fins facilitate cooling and condensing of dielectric fluid vapor generated within the sealed compartment. Within the sealed compartment, multiple thermally conductive condenser fins are interleaved with multiple fluid-boiling fins of a heat spreader coupled to one or more of the electronic components immersed within the dielectric fluid. The interleaved fins facilitate localized cooling and condensing of dielectric fluid vapor within the sealed compartment.
摘要:
Dehumidifying and re-humidifying cooling apparatus and method are provided for an electronics rack. The apparatus includes a dehumidifying air-to-liquid heat exchanger disposed at an air inlet side of the rack and a re-humidifying structure disposed at an air outlet side of the rack. The dehumidifying air-to-liquid heat exchanger is in fluid communication with a coolant loop for passing chilled coolant through the heat exchanger, and the dehumidifying heat exchanger dehumidifies ingressing air to the electronics rack to reduce a dew point of air flowing through the rack. A condensate collector disposed at the air inlet side collects liquid condensate from the dehumidifying of ingressing air, and a condensate delivery mechanism delivers the condensate to the re-humidifying structure to humidify air egressing from the electronics rack.
摘要:
System and method are provided for cooling an electronics rack. A modular cooling unit (MCU) is associated with the rack to provide system coolant to an electronics subsystem and a bulk power assembly. The MCU includes a liquid-to-liquid heat exchanger, and defines portions of facility and system coolant loops. Chilled coolant from a facility source is passed through the liquid-to-liquid heat exchanger to cool system coolant flowing through the system coolant loop. The system also includes an air-to-liquid heat exchanger in fluid communication with the system coolant loop, a pump in fluid communication with the system coolant loop, and a controller. The controller controls operation of the pump to adjust flow of system coolant through the system coolant loop dependent upon a mode of operation. In a standby mode, system coolant flows through the air-to-liquid heat exchanger at a lower flow rate, and expels heat to ambient air.
摘要:
Apparatus and method are provided for facilitating cooling of air passing through an electronics rack. The apparatus includes a heat exchange assembly hingedly mounted above and external to the rack, such that air passing above the rack from an air outlet side to an air inlet side thereof passes through the heat exchange assembly, and is cooled. The heat exchange assembly includes a support structure to support hinged mounting of the assembly above the rack, and an air-to-liquid heat exchanger coupled to the support structure. The heat exchanger has an inlet plenum and an outlet plenum in fluid communication with respective connect couplings which facilitate connection of the plenums to coolant supply and return lines, respectively. The heat exchanger also includes heat exchange tube sections, each of which has a coolant channel with an inlet and an outlet coupled to the inlet and outlet plenums, respectively.
摘要:
Cooled electronic modules and methods of fabrication are provided with pump-enhanced, dielectric fluid immersion-cooling of the electronic device. The cooled electronic module includes a substrate supporting an electronic device to be cooled. A cooling apparatus couples to the substrate, and includes a housing configured to at least partially surround and form a sealed compartment about the electronic device. Additionally, the cooling apparatus includes dielectric fluid and one or more pumps disposed within the sealed compartment. The dielectric fluid is in direct contact with the electronic device, and the pump is an impingement-cooling, immersed pump disposed to actively pump dielectric fluid within the sealed compartment towards the electronic device. Multiple condenser fins extend from the housing into the sealed compartment in an upper portion of the sealed compartment, and a liquid-cooled cold plate or an air-cooled heat sink is coupled to the top of the housing for cooling the condenser fins.
摘要:
Cooling apparatuses and methods are provided for facilitating cooling of an electronic device utilizing a cooling subassembly, a pump and a controller. The cooling subassembly includes a jet impingement structure, and a thermosyphon. The jet impingement structure directs coolant into a chamber of the subassembly onto a surface to be cooled when in a jet impingement mode, and the thermosyphon, which is associated with the chamber, facilitates convective cooling of the surface to be cooled via boiling of coolant within the chamber when in a thermosyphon mode. The controller, which is coupled to the pump to control activation and deactivation of the pump, also controls transitioning between the jet impingement mode and the thermosyphon mode based on a sensed temperature of the electronic device.
摘要:
Liquid-cooled electronics racks and methods of fabrication are provided wherein a liquid-based cooling apparatus facilitates cooling of electronic subsystems when docked within the electronics rack. The cooling apparatus includes a liquid-cooled cooling structure mounted to a front of the rack, and a plurality of heat transfer elements. The cooling structure is a thermally conductive material which has a coolant-carrying channel for facilitating coolant flow through the structure. Each heat transfer element couples to one or more heat-generating components of a respective electronic subsystem, physically contacts the cooling structure when that electronic subsystem is docked within the rack, and provides a thermal transport path from the heat-generating components of the electronic subsystem to the liquid-cooled cooling structure. Advantageously, electronic subsystems may be docked within or undocked from the electronics rack without affecting flow of coolant through the liquid-cooled cooling structure.