摘要:
A semiconductor laser module including a semiconductor laser device having an integrated diffraction grating configured to output a multiple mode laser beam in the presence of a driving current, an optical fiber configured to guide the multiple mode laser beam to an output of the laser module, and an optical attenuation device configured to attenuate the multiple mode laser beam by an amount sufficient to provide a predetermined output power from the output of the laser module. The optical attenuation device may be an optical coupling lens offset from an optimum coupling position by an amount sufficient to provide the predetermined output power, or an optical attenuator interrupting the optical fiber and configured to attenuate the multiple mode laser beam by an amount sufficient to provide the predetermined output power. Also, a two fiber Raman amplifier having a super large area (SLA) fiber that provides amplification of the signal based primarily on the forward excitation light can also be used to suppress SBS.
摘要:
A method of aligning an optical fiber according to the present invention has a first step of aligning an optical fiber by moving the optical fiber and finding a position that maximizes the power of beam outputted from the optical fiber with the use of a power meter, and a second step of moving and aligning the optical fiber in the optical axis direction (direction Z) from the position in which the optical fiber has been as a result of the alignment in the first step in a manner that makes the degree of polarization of two laser beams K1 and K2 equal to or lower than a given level with the use of a polarimeter.
摘要:
A semiconductor laser module has a semiconductor laser device; a package for housing the semiconductor laser device; a PBC fixed in the package for polarization-synthesizing two laser beams output from the semiconductor laser device; a depolarizing element fixed in the package for depolarizing a synthesizing light output from the PBC; and an optical fiber for receiving a light output from the depolarizing element.
摘要:
A cavity length is determined on the basis of a relationship of electric drive power to a range of optical output power over 50 mW, for cavity length to be constant as a parameter in a range over 1000 &mgr;m, so that the electric drive power is vicinal to a minimum thereof in correspondence to a desirable optical output power. If the optical output is 360 mW for example, a cavity length of 1500 &mgr;m is determined to be selected.
摘要:
A semiconductor laser module includes a single semiconductor laser device having a first light emitting stripe and at least one other light emitting stripe which are aligned to respectively emit a first laser beam and at least one other laser beam through one edge surface. It also includes a first lens positioned so that the first laser beam and the at least one other laser beam emitted from the semiconductor laser device are incident thereon, the first lens configured to separate the first laser beam and the at least one other laser beam. A beam synthesizing member is included and has a first input part on which the first laser beam is incident, at least one other input part on which the at least one other laser beam is incident, and an output part from which the first laser beam emerging from the first input part and the at least one other laser beam emerging from the at least one other input part are multiplexed and emitted as a multiplexed laser beam. An optical fiber is positioned to receive the multiplexed laser beam therein.
摘要:
A semiconductor laser module is packaged on a mounting substrate through a thermal diffusion sheet member. The thermal diffusion sheet member is that having thermal conductivity where thermal conductivity in the surface direction is greater than that in the thickness direction. Specifically, the thermal diffusion sheet member is graphite, for example, and has a thermal conductivity of 300 W/m·K or greater in the surface direction.
摘要:
A bottom plate (4a) of a box-shaped package (4) is made of a metal. Portions of the package (4) (peripheral wall (4b) and cover plate (4c)) other than the bottom plate (4a) are made of a resin or a ceramic that is more economical than the metal. The material cost of the package (4) can thus be reduced in comparison with the case where the package (4) is made of the metal as a whole. A Peltier module (5) is fixed to the bottom plate (4a). A base (6) is fixed over the Peltier module (5), and a semiconductor laser chip (2) is disposed on this base (6). Heat from the semiconductor laser chip (2) and from the Peltier module (5) can be efficiently radiated through the bottom plate (4a) made of the metal, and deterioration of heat radiation performance can be prevented.
摘要:
Cycloolefin resin pellets of the present invention comprises a cycloolefin resin pellet and a powdery coating material and/or a liquid coating material, the melting point or the glass transition point of the coating material being 200° C. or lower, and the coating material being adhered onto the surface of the cycloolefin resin pellets, so that the molded product thereof is excellent in transparency.
摘要:
There is provided a lensed optical fiber (20) in which a lens is formed on the end face of an optical fiber to enhance the efficiency of optical coupling with a light beam. The tip end portion of an optical fiber (21) is formed with a lens (26) formed into a wedge shape having two slant portions (24) symmetrical with respect to an axis (Ac) of a core (22) and a plane portion (25) perpendicular to the axis of the core.
摘要:
A semiconductor laser module comprising a lens system having first and second lenses for coupling a beam emitted from a semiconductor laser with a core expanded fiber having a single-mode fiber end whose core diameter is expanded. The core expanded fiber is set so as to have a core expansion coefficient of 1.3 or more and an absolute value of change rate of mode field diameter smaller than 6.0.times.10.sup.-4 .mu.m.sup.-1.
摘要翻译:一种半导体激光器模块,包括具有第一和第二透镜的透镜系统,用于将从半导体激光器发射的光束与具有纤芯直径扩大的单模光纤端的芯扩展光纤耦合。 芯扩展纤维的芯膨胀系数为1.3以上,模场直径的变化率的绝对值小于6.0×10 -4 m -1。