Abstract:
A method of predicting serum phosphorus concentrations in a patient during hemodialysis includes measuring serum phosphorus concentrations of the patient over a hemodialysis treatment session time and an ultrafiltration rate calculated by a difference between pre- and post-dialytic body weight of the patient during an initial hemodialysis treatment session divided by a total treatment time of the treatment session and estimating a phosphorous mobilization clearance and a pre-dialysis distribution volume of phosphorus for the patient. Serum phosphorus concentrations of the patient can then be predicted at any time during any hemodialysis treatment session with the estimated phosphorous mobilization clearance and pre-dialysis distribution volume of phosphorus of the patient.
Abstract:
Transfer sets are disclosed in the present patent. The transfer set provides a connection between a source of peritoneal dialysis fluid and a patient for whom peritoneal dialysis has been prescribed. The transfer sets disclosed herein are smaller and provide a more compact and convenient device by which a dialysis patient controls the flow of dialysis fluid to and from the peritoneum of the patient. The devices are more compact and convenient because they include more convenient mechanisms for starting and stopping flow of the dialysis fluid. It is also easy to determine whether the mechanism is in a closed or open configuration by simply looking at the mechanism.
Abstract:
The present system and method in one embodiment limit a maximum instantaneous peritoneal volume to a comfortable level, while allowing the dialysis machine to advance to fill a prescribed volume whenever the drain ends after a minimum drain percentage has been attained. If a low drain condition occurs, the nominal fill volume is lowered and a therapy cycle is added, so that a prescribed total amount of fresh therapy fluid is used during therapy, maximizing therapeutic benefit. An allowable residual volume at the end of an incomplete drain is increased, thereby lowering the probability of a subsequent low drain condition.
Abstract:
A hemodialysis system includes: (i) a dialyzer; (ii) a dialysate source; a dialysate pump; (iii) a dialysate cassette operatively connected to the dialysate pump such that the dialysate pump can pump dialysate through the dialysate cassette when the dialysate cassette is in fluid communication with the dialysate source, the dialysate cassette in fluid communication with the dialyzer; (iv) a blood pump; and (v) a blood cassette separate from the dialysate cassette, the blood cassette operatively connected to the blood pump such that the blood pump can pump blood through the blood cassette, the blood cassette including a housing, the housing including a from-patient tube connector, a to-patient tube connector, a saline/priming tube connector, a to-dialyzer tube connector, a from-dialyzer tube connector, and an internal air separation chamber.
Abstract:
A hemodialysis system for operation with a blood source and a dialysate source, the system including: (i) a first machine portion including a blood pump; (ii) a blood cassette operatively connected to the blood pump such that the blood pump can pump blood through the blood cassette when the blood cassette is in fluid communication with the blood source; (iii) a dialyzer fluidly connected to the blood cassette; (iv) a second machine portion separate from the first machine portion, the second machine portion including a dialysate pump; and (v) a dialysate cassette separate from the blood cassette, the dialysate cassette operatively connected to the dialysate pump such that the dialysate pump can pump dialysate through the dialysate cassette when the dialysate cassette is in fluid communication with the dialysate source, the dialysate cassette being fluidly connected to the dialyzer.
Abstract:
A hemodialysis system includes (i) a dialyzer; (ii) a blood pump; (iii) a blood cassette operatively connected to the dialyzer and the blood pump; (iv) a dialysate heater; (v) first and second peristaltic dialysate pumps; and (vi) a dialysate cassette separate from the blood cassette, the dialysate cassette including an organizer configured to support a drain tube, a to-dialyzer tube and a from-dialyzer tube, the cassette further including a first pumping tube, a second pumping tube and an inline fluid heating pathway, the cassette when mounted for operation orienting (a) the first pumping tube for operation with the first peristaltic dialysate pump, (b) the second pumping tube for operation with the second peristaltic dialysate pump and (c) the fluid heating pathway for operation with the dialysate heater.
Abstract:
A kidney failure therapy system includes: (a) a dilaysate supply; (b) at least one valve actuator; (c) at least one pump actuator; and (d) a disposable unit including first and second flexible sheets sealed together for form: (i) at least one flow path configured to be placed in fluid communication with the dilaysate supply; and operable with the at least one valve actuator; and (ii) at least one pumping portion configured to operate with the at least one pump actuator.
Abstract:
A system and method for balancing flows of renal replacement fluid is disclosed. The method uses pressure controls and pressure sensing devices to more precisely meter and balance the flow of fresh dialysate and spent dialysate. The balancing system may use one or two balancing devices, such as a balance tube, a tortuous path, or a balance chamber.
Abstract:
Films containing microlayer structures are provided. In a general embodiment, the present disclosure provides an autoclavable film containing a first microlayer of a heat resistant polymer and a second microlayer of a flexible polymer attached to the first microlayer. Each of the first microlayer and the second microlayer has a thickness ranging between about 0.01 microns and about 10 microns.
Abstract:
A biological suspension processing system is disclosed that may include a suspension treatment device for treating one or more components of a biological suspension, a first fluid flow path for introducing a suspension into the treatment device and a second fluid flow path for withdrawing a constituent of the suspension from the device. At least one microelectromechanical (MEM) sensor communicates with one of the fluid flow paths for sensing a selected characteristic of the fluid therewith. The MEM sensor may be located elsewhere, such as on a container or bag and communicate with the interior for sensing a characteristic of the fluid contained therein. A wide variety of characteristics may be sensed, such as flow rate, pH, cell type, cell antigenicity, DNA, viral or bacterial presence, cholesterol, hematocrit, cell concentration, cell count, partial pressure, pathogen presence, or viscosity.