摘要:
A display device which has thin film transistors, wherein a semiconductor layer includes a first layer, second layers and third layers, the first layer has a channel region, the second layers are an impurity layer, the third layers are a low-concentration impurity layer, the second layers have connection portions connected with an electrodes, the third layers are formed to annularly surround the second layers, a channel-region-side edge portion out of edge portions of the third layer is in contact with the first layer, the edge portions of the third layer but the channel-region-side edge portion are in contact with an interlayer insulation film, the second layers have a first region where the second layer overlaps with a gate electrode and a second region where the second layer does not overlap with the gate electrode, and the connection portion is in the second region.
摘要:
Provided is a display device capable of suppressing generation of optical leakage current as well as increase in capacitance in a case where a plurality of thin film transistors (TFTs) including a gate electrode film on a light source side are formed in series. Relative areas of opposing regions between a semiconductor film and the gate electrode film with respect to channel regions are different in at least a part of the plurality of TFTs, to thereby provide a flat panel display having a structure for suppressing increase in capacitance while suppressing generation of optical leakage current.
摘要:
It is an object of the invention to provide a light emitting device which can display a superior image in which luminescent color from each light emitting layer is beautifully displayed and power consumption is lowered in a light emitting element in which light emitting layers are stacked. One feature of the invention is that, in a light emitting element which comprises light emitting layers stacked between electrodes, each distance between each light emitting layer and an electrode is approximately oddly multiplied ¼ wavelength by controlling a thickness of a layer provided therebetween to enhance luminous output efficiency. Another feature of the invention is that a drive voltage is lowered using a high conductive material for the layer compared with a conventional element.
摘要:
A light emission device manufactured by a method of forming a curved surface having a radius of curvature to the upper end of an insulator 19, exposing a portion of the first electrode 18c to form an inclined surface in accordance with the curved surface, and applying etching so as to expose the first electrode 18b in a region to form a light emission region, in which emitted light from the layer containing the organic compound 20 is reflected on the inclined surface of the first electrode 18c to increase the total take-out amount of light in the direction of an arrow shown in FIG. 1A and, further, forming a light absorbing multi-layered film 24 comprising light absorbing multi-layered film on the first electrode 18c other than the region to form the light emission region, thereby obtaining a light emission device of a structure increasing the amount of light emission taken out in one direction in a light emission element, while not all the light formed in the layer containing the organic compound are taken out from the cathode as a transparent electrode toward TFT but the light was emitted also, for example, in the lateral direction (direction parallel with the plane of the substrate).
摘要:
A manufacturing method of an active matrix light emitting device in which the active matrix light emitting device can be manufactured in a shorter time with high yield at low cost compared with conventional ones will be provided. It is a feature of the present invention that a layered structure is employed for a metal electrode which is formed in contact with or is electrically connected to a semiconductor layer of each TFT arranged in a pixel area of an active matrix light emitting device. Further, the metal electrode is partially etched and used as a first electrode of a light emitting element. A buffer layer, a layer containing an organic compound, and a second electrode layer are stacked over the first electrode.
摘要:
An information processing apparatus performs first filter processing to combine pixels of an image along a predetermined direction. A line noise image is extracted by executing second filter processing for the processed image along a direction different from the predetermined direction. The extracted line noise image is subtracted from the image to acquire a line noise reduced image.
摘要:
It is an object of the present invention to provide a light-emitting device in which, even when a material with high reflectivity such as aluminum is used for an electrode, a layer containing oxygen can be formed over the electrode without increasing contact resistance and a manufacturing method thereof. According to the present invention, a feature thereof is a light-emitting element having an electrode composed of a stacked structure where a conductive film having high reflectivity such as aluminum, silver, and an alloy containing aluminum or an alloy containing silver, and a conductive film composed of a refractory metal material is provided over the conductive film, or a light-emitting device having the light-emitting element.
摘要:
The present invention provides a display device having thin film transistors which can reduce an OFF current in spite of the extremely simple constitution. In the display device having thin film transistors on a substrate, each thin film transistor includes a gate electrode which is connected with a gate signal line, a semiconductor layer which is formed astride the gate electrode by way of an insulation film, a drain electrode which is connected with a drain signal line and is formed on the semiconductor layer, and a source electrode which is formed on the semiconductor layer in a state that the source electrode faces the drain electrode in an opposed manner, and a side of the drain electrode which faces the source electrode does not overlap the gate electrode as viewed in a plan view, and a side of the source electrode which faces the drain electrode does not overlap the gate electrode as viewed in a plan view.
摘要:
A display device includes: a conductive layer on which gate electrodes are formed; a first insulation layer which is formed on the conductive layer; a semiconductor layer which is formed on the first insulation layer and is provided for forming semiconductor films which contain poly-crystalline silicon above the gate electrodes; and a second insulation layer which is formed on the semiconductor layer. Here, the semiconductor film includes a channel region which overlaps with the gate electrode as viewed in a plan view. In the channel region, a portion of the semiconductor film which is in contact with the second insulation layer exhibits higher impurity concentration than a portion of the semiconductor film which is in contact with the first insulation layer.
摘要:
An object of the present invention is to provide a display device where small thin film transistors with a lower off current can be formed. The present invention provides a display device where thin film transistors are formed on a substrate, and in the above described thin film transistors, a gate electrode is formed on a semiconductor layer with a gate insulating film in between, the above described thin film transistors are formed of at least a first thin film transistor and a second thin film transistor, and the above described semiconductor layer is divided into individual regions for each film transistor, the above described semiconductor layer is provided with a common region shared either by the drain region of the above described first thin film transistor and the source region of the above described second thin film transistor or by the source region of the above described first thin film transistor and the drain region of the above described second thin film transistor, in the first thin film transistor and the second thin film transistor, the semiconductor layer is provided with LDD regions where the impurity concentration is lower than in the above described drain region and the above described source region, between the channel region and the drain region, as well as between the channel region and the source region, and the above described gate electrode is formed so as to overlap with the above described common region in the above described semiconductor layer and face at least the above described channel region and the above described LDD regions of the above described first thin film transistor and the above described channel region and the above described LDD regions of the above described second thin film transistor.