Abstract:
The present invention is a thermal interface for coupling a heat source to a heat sink. One embodiment of the invention comprises a mesh and a liquid, e.g., a thermally conductive liquid, disposed in the mesh. The mesh and the thermally conductive liquid are adapted to contact both the heat source and the heat sink when disposed therebetween. In one embodiment, the mesh may comprise a metal or organic material compatible with the liquid. In one embodiment, the liquid may comprise liquid metal. For example, the liquid may comprise a gallium indium tin alloy. A gasket may optionally be used to seal the mesh and the liquid between the heat source and the heat sink. In one embodiment, the heat source is an integrated circuit chip.
Abstract:
A device for generating an x-ray point source includes a target, and an electron source for producing electrons which intersect with the target to generate an x-ray point source having a size which is confined by a dimension of the target.
Abstract:
The present invention is a method and apparatus for cooling a semiconductor heat source. In one embodiment a thermal spreader is provided and includes a substrate for supporting the semiconductor heat source and a heat sink coupled to the substrate. A channel is disposed between the heat sink and substrate. The channel has at least one wall defined by the heat sink. The surface area of the channel wall defined by the heat sink is about 10 to about 100 times the surface area of a bottom surface of the semiconductor heat source. A coolant, for example liquid metal, circulates within the channel.
Abstract:
The present invention is a thermal interface for coupling a heat source to a heat sink. One embodiment of the invention comprises a mesh and a liquid, e.g., a thermally conductive liquid, disposed in the mesh. The mesh and the thermally conductive liquid are adapted to contact both the heat source and the heat sink when disposed therebetween. In one embodiment, the mesh may comprise a metal or organic material compatible with the liquid. In one embodiment, the liquid may comprise liquid metal. For example, the liquid may comprise a gallium indium tin alloy. A gasket may optionally be used to seal the mesh and the liquid between the heat source and the heat sink. In one embodiment, the heat source is an integrated circuit chip.
Abstract:
An apparatus (and method) for forming a pattern on a workpiece, includes an optical phase contrast image sensor, and an imprint lithography system coupled to the optical phase contrast image sensor for laterally aligning an imprint template feature relative to the workpiece.
Abstract:
A method (and apparatus) for nano lithography, includes applying a pneumatic pressure to at least one of a surface of a semi-rigid mask or template and a portion of a surface of a resist-coated workpiece, and, by the applying of the pneumatic pressure, transferring a pattern from the mask to the workpiece.
Abstract:
The present invention is a thermal interface for IC chip cooling. One embodiment of the invention comprises a thermally conductive liquid or paste-like metal(s) disposed within a flexible, thermally conductive enclosure. The enclosure is adapted to be placed between an IC chip and a heat sink to enhance heat transfer from the chip to the heat sink, thereby enabling quicker and more efficient cooling of the chip than can be achieved by conventional techniques. In several embodiments, the thermal interface is held in place by mechanical pressure rather than by bonding, which further facilitates inspection and repair of the IC device.
Abstract:
The invention discloses a method capable of writing/erasing high-density data, preferably on a phase-change recording media. A preferred embodiment of the invention features a novel thermal near-field heater that may be employed in an assembly enabled by the present method. The method may be preferably used for writing in a substantially thermal near-field mode. The invention provides advantages of writing densities greater than that of diffraction limited systems, for example, writing densities of approximately greater than 100 Gbit/inch2, and writing speeds approximately greater than 100 MHz.
Abstract:
A method for detecting and/or imaging a workpiece. In a detection aspect, the method comprises the steps of sampling an electromagnetic wave packet representative of workpiece properties and comprising encoded wave information derivable from a multi-pole interactive coupling between a probe tip and the workpiece; decoding said electromagnetic wave packet by interrogating at least one of its phase and amplitude information; and, using the decoding information as a means for detecting the presence of the workpiece. In an imaging aspect, the method includes incorporating the previous steps in a scanning operation for developing an image representative of the workpiece.
Abstract:
Adjacent shaped grooves are placed in single crystal structure with great accuracy and known dimensions by a combination of anisotropic and isotropic etching to produce a scanning probe microscope calibration standard with fine V-shaped grooves forming a prismatically shaped ridge or blade between them. A probe microscope to be calibrated is used to profile the tip of the ridge in a number of places along the length of the ridge. With knowledge of the sidewall angles and tip radius of the calibration standard both the flat tip dimensions of a probe with a flared tip and the tip radius of a probe with a conical tip can be calculated from the profile they produce.