Abstract:
A bistable molecular switch can have a highly conjugated first state and a less conjugated second state. The bistable molecular switch can be configured such that application of an electric field reversibly switches the molecular switch from the first state to the second state. Additionally, the bistable molecular switch can include a hydrophobic moiety and a hydrophilic moiety. Such molecular switches can be incorporated into a thin film as part of a molecular switch system which can include a layer of molecular switches between a first electrode layer and a second electrode layer. The layer of molecular switches can have substantially all of the molecular switches having their hydrophilic moiety oriented in the same direction. An electric potential can then be induced between the first and second electrode layers sufficient to switch the molecular switches from the first or second state to the second or first state, respectively. The first and second states have differences in resistivity which are suitable for use in electronic applications. Thin films containing these oriented molecular switches can be used to produce a wide variety of electronic components such as ROM memory and the like.
Abstract:
A molecular system is provided for nanometer-scale reversible electronic and optical switches, specifically, electric field-activated molecular switches that have an electric field induced band gap change that occurs via a molecular conformation change or a tautomerization. Changing of extended conjugation via chemical bonding change to change the band gap is accomplished by providing the molecular system with one rotating portion (rotor) and two or more stationary portions (stators), between which the rotor is attached. The molecular system of the present invention has three branches (first, second, and third branches) with one end of each branch connected to a junction unit to form a “Y” configuration. The first and second branches are on one side of the junction unit and the third branch is on the opposite side of the junction unit. The first branch contains a first stator unit in its backbone, the junction unit comprises a second stator unit, and the first branch further contains a rotor unit in its backbone between the first stator unit and the second stator unit. The second branch includes an insulating supporting group in its backbone for providing a length of the second branch substantially equal to that of the first branch, wherein the rotor unit rotates between two states as a function of an externally-applied field.
Abstract:
Novel 4-substituted piperidine analogs, pharmaceutical compositions containing the same and the method of using 4-substituted piperidine analogs are selective active antagonists of N-methyl-D-aspartate (NMDA) receptor subtypes for treating conditions such as stroke, cerebral ischemia, central nervous system trauma, hypoglycemia, psychosis, anxiety, migraine headaches, glaucoma, CMV retinitis, aminoglycoside antibiotics-induced hearing loss, convulsions, chronic pain, opioid tolerance or withdrawal, urinary incontinence or neurodegenerative disorders, such as lathyrism, Alzheimer's Disease, Parkinsonism and Huntington's Disease are described.
Abstract:
An organic photoconductor includes: a conductive substrate; a charge generation layer formed on the conductive substrate; a charge transport layer formed on the charge generation layer; and a protective coating formed on the charge transport layer. The protective coating comprises nanoparticles incorporated in an in-situ cross-linked polymer matrix. A process for increasing mechanical strength in an organic photoconductor is also provided.
Abstract:
Pigment based inks are provided. The inks include a non-polar carrier fluid; and a surface-functionalized pigment particle including a nitrogen-inked moiety to the surface of the pigment particle through a nitrogen link at one end of the nitrogen-linked moiety and a segment copolymer having at least two blocks attached at another end, the pigment particle suspended in the non-polar carrier fluid. A combination of an electronic display and an electronic ink employing the pigment and a process for making the pigment-based inks are also provided.
Abstract:
The present disclosure is directed towards emissive dendrimer compositions, luminescence-based pixels, luminescence-based sub-pixels, and associated methods with an emissive dendrimer having various structures as described herein.
Abstract:
According to an example, an apparatus for performing spectroscopy includes a parabolic reflector and a plurality of surface-enhanced Raman spectroscopy (SERS) elements spaced from the parabolic reflector and positioned substantially at a focal point of the parabolic reflector. The parabolic reflector is to reflect Raman scattered light emitted from molecules in a near field generated by the plurality of SERS elements to substantially increase the flux of the Raman scattered light emitted out of the apparatus.
Abstract:
An organic photoconductor includes: a conductive substrate; a charge generation layer formed on the conductive substrate; a charge transport layer formed on the charge generation layer; and a protective coating formed on the charge transport layer. The protective coating comprises nanoparticles incorporated in an in-situ cross-linked polymer matrix. A process for increasing mechanical strength in an organic photoconductor is also provided.
Abstract:
A phthalocyanine dye with extended conjugation includes one or both of a phthalocyanine component and a naphthalocyanine component and at least one water soluble substituent on an aryl group of the phthalocyanine dye. The extended conjugation of the phthalocyanine dye includes at least one benzene moiety of the component being one of (a) joined to an aryl group either indirectly using an alkylene linkage or directly, (b) joined to a benzene moiety of another of the components to form an oligomer of the components, and (c) a combination of (a) and (b). The extended conjugation shifts absorption of the phthalocyanine dye to greater than 800 nm.
Abstract:
There is provided a display including a display including a number of display cells (400). Each of the display cells (400) includes a first electrode (414), which is transparent and disposed over a front surface of a display cell (400). A second electrode (418) is disposed opposite the first electrode (414). A dielectric layer (404) is disposed between the first electrode (414) and the second electrode (418), and is patterned to create a plurality of recessed volumes (408). A fluid is disposed in a volume defined by the first electrode (414), the dielectric layer (404), and the recessed volumes (408). The fluid (410) comprises a dye of a different color from an adjacent display cell (400). Charged particles (412) are disposed within the fluid (410). The display also includes a display driver configured to pack the charged particles (412) against the front of the display cell to create a first optical state, to pack the charged particles (412) against the back of the display cell (400) to create a second optical state, or to pack the particles into the recessed regions (408) to create a third optical state.