摘要:
A system for characterizing periodic structures formed on a sample on a real time basis is disclosed. A spectroscopic measurement module generates output signals as a function of wavelength. The output signals are supplied to a processor for evaluation, which creates an initial theoretical model having a rectangular structure. The processor calculates the theoretical optical response of that sample, which is compared to normalized measured values at each of a plurality of wavelengths. The model configuration is then modified to be closer to the actual measured structure. The processor recalculates the optical response and compares the result to the normalized data. This process is repeated in an iterative manner until a best fit rectangular shape is obtained. Thereafter, the complexity of the model is iteratively increased, and model is iteratively fit to the data until a best fit model is obtained which is similar to the periodic structure.
摘要:
A method for modeling diffraction includes constructing a theoretical model of the subject. A numerical method is then used to predict the output field that is created when an incident field is diffracted by the subject. The numerical method begins by computing the output field at the upper boundary of the substrate and then iterates upward through each of the subject's layers. Structurally simple layers are evaluated directly. More complex layers are discretized into slices. A finite difference scheme is performed for these layers using a recursive expansion of the field-current ratio that starts (or has a base case) at the lowermost slice. The combined evaluation, through all layers, creates a scattering matrix that is evaluated to determine the output field for the subject.
摘要:
An optical metrology includes a library, a metrology tool and a library evolution tool. The library is generated to include a series of predicted measurements. Each predicted measurement is intended to match the measurements that a metrology device would record when analyzing a corresponding physical structure. The metrology tool compares its empirical measurements to the predicted measurements in the library. If a match is found, the metrology tool extracts a description of the corresponding physical structure from the library. The library evolution tool operates to improve the efficiency of the library. To make these improvements, the library evolution tool statistically analyzes the usage pattern of the library. Based on this analysis, the library evolution tool increases the resolution of commonly used portions of the library. The library evolution tool may also optionally reduce the resolution of less used portions of the library.
摘要:
An ellipsometer, and a method of ellipsometry, for analyzing a sample using a broad range of wavelengths, includes a light source for generating a beam of polychromatic light having a range of wavelengths of light for interacting with the sample. A polarizer polarizes the light beam before the light beam interacts with the sample. A rotating compensator induces phase retardations of a polarization state of the light beam wherein the range of wavelengths and the compensator are selected such that at least a first phase retardation value is induced that is within a primary range of effective retardations of substantially 135.degree. to 225.degree., and at least a second phase retardation value is induced that is outside of the primary range. An analyzer interacts with the light beam after the light beam interacts with the sample. A detector measures the intensity of light after interacting with the analyzer as a function of compensator angle and of wavelength, preferably at all wavelengths simultaneously. A processor determines the polarization state of the beam as it impinges the analyzer from the light intensities measured by the detector.
摘要:
An optical measurement system for evaluating a reference sample that has at least a partially known composition. The optical measurement system includes a reference ellipsometer and at least one non-contact optical measurement device. The reference ellipsometer includes a light generator, an analyzer and a detector. The light generator generates a beam of quasi-monochromatic light having a known wavelength and a known polarization for interacting with the reference sample. The beam is directed at a non-normal angle of incidence relative to the reference sample to interact with the reference sample. The analyzer creates interference between the S and P polarized components in the light beam after the light beam has interacted with reference sample. The detector measures the intensity of the light beam after it has passed through the analyzer. A processor determines the polarization state of the light beam entering the analyzer from the intensity measured by the detector, and determines an optical property of the reference sample based upon the determined polarization state, the known wavelength of light from the light generator and the composition of the reference sample. The processor also operates the optical measurement device to measure an optical parameter of the reference sample. The processor calibrates the optical measurement device by comparing the measured optical parameter from the optical measurement device to the determined optical property from the reference ellipsometer.
摘要:
An optical inspection apparatus is disclosed for generating an ellipsometric output signal at a plurality of wavelengths, each signal being representative of an integration of measurements at a plurality of angles of incidence. A polarized, broad band light beam is focused through a lens onto a sample in a manner to create a spread of angles of incidence. The reflected beam is passed through a quarter-wave plate and a polarizer which creates interference effects between the two polarizations states in the beam. The beam is then passed through a filter which transmits two opposed radial quadrants of the beam and blocks light striking the remaining two quadrants. The beam is then focused and angularly dispersed as function of wavelength. Each element of a one dimensional photodetector array generates an output signal associated with a specific wavelength and represents an integration of the phase-sensitive ellipsometric parameter (.delta.) at a plurality of angles of incidence. A second, independent measurement is taken in order to isolate the signal of interest. In one embodiment, the azimuthal angle of the filter is rotated by ninety degrees. The output signals from the second measurement are subtracted from the corresponding output signals from the first measurement to obtain the phase-sensitive ellipsometric information at a plurality of wavelengths. The ellipsometric information is used to analyze the sample.
摘要:
An approach for increasing the sensitivity of a high resolution measurement device 50 is disclosed. The device includes a laser 52 for generating a probe beam 54 which is tightly focused onto the surface of the sample 58. A detector 66 is provided for monitoring a parameter of the reflected probe beam. In accordance with the subject invention, a spatial filter is provided for reducing the amount of light energy reaching the detector that has been reflected from areas on the surface of the sample beyond the focused spot. The spatial filter includes a relay lens 68 and a blocking member 70 located in the focal plane of the lens. The blocking member 70 includes an aperture 72 dimensioned to block light reflected from the surface of the sample beyond a predetermined distance from the center of the focused spot. In this manner, greater sensitivity to sample characteristics within the highly focused spot is achieved.
摘要:
An apparatus (20) for measuring the thickness of a thin film layer (32) on substrate (28) includes a probe beam of radiation (24) focused substantially normal to the surface of the sample using a high numerical aperture lens (30). The high numerical aperture lens (30) provides a large spread of angles of incidence of the rays within the incident focused beam. A detector (50) measures the intensity across the reflected probe beam as a function of the angle of incidence with respect to the surface of the substrate (28) of various rays within the focused incident probe beam. A processor (52) functions to derive the thickness of the thin film layer based on these angular dependent intensity measurements. This result is achieved by using the angular dependent intensity measurements to solve the layer thickness using variations of the Fresnel equations. The invention is particularly suitable for measuring thin films, such as oxide layers, on silicon semiconductor samples.
摘要:
The subject invention discloses a method and apparatus for evaluating both the thickness and compositional variables in a layered or thin film sample. Two independent detection systems are provided for measuring thermal waves generated in a sample by a periodic, localized heating. One detection system is of the type that generates output signals that are primarily a function of the surface temperature of the sample. The other detection system generates signals that are primarily a function of the integral of the temperature beneath the sample surface. The two independent thermal wave measurements permit analysis of both thickness and compositional variables. An apparatus is disclosed wherein both detection systems can be implemented efficiently within one apparatus.
摘要:
An apparatus and method is disclosed for evaluating surface conditions on a sample. The system is particularly suited for detecting thin residues encountered in semiconductor lithographic and etching processes. The system is also capable of measuring ion implanted dopant concentrations prior to annealing. The apparatus includes an intensity modulated laser beam which is focused on the surface of the sample to generate periodic heating. A second light beam is focused onto the periodically heated area of the sample in a manner such that it is reflected to a detector. The intensity changes in the probe beam, resulting from the temperature induced changes of reflectivity at the surface of the sample, are measured and evaluated to determine the absence or presence of residues, or to measure the concentrations of ion implanted dopants.