Abstract:
Apparatus for manufacturing poles of reinforced plastics material by advancing a prefabricated hollow core of plastics material coaxially with a plurality of resin impregnated reinforcing threads, the threads being held tight and radially distributed around the core and being caused to adhere thereto, spirally winding at least one impregnated reinforcing thread around to at least partially cover the core and impregnated reinforcing threads during their advance, and leaving the core and the impregnated reinforcing threads to harden to obtain the union of the threads with the core.
Abstract:
A VEHICLE PROPELLER SHAFT INCLUDES A PAIR OF SPACED END MEMBERS HAVING INNER ENDS WITH CHARACTERIZED SURFACES. A LIGHT BUT STIFF CYLINDRICAL ARBOR, SUCH AS OF POLYURETHANE FOAM, CONNECTS THE END MEMBERS AND A TUBE FORMED OF HARDENED THERMOSETTING RESIN REINFORCED WITH FIBER GLASS FILAMENTS IF FORMED ON THE ARBOR AND INTERLOCKINGLY ENGAGES THE CHARACTERIZED SURFACES OF THE END MEMBERS. A METHOD OF FORMING SUCH A SHAFT INCLUDES STEPS OF FORMING A POLYURETHANE FOAM ARBOR BETWEEN THE END MEMBERS AND FORMING THE RESIN BONDED FIBER GLASS TUBE N PLACE OF THE ARBOR AND END MEMBERS.
Abstract:
Methods and systems are disclosed for encasing various structures with a seamless continuous sleeve, where the presence of existing supports does not allow slipping a sleeve over the structure. In these methods strips of fabrics smeared with or saturated by resin are helically or non-helically wrapped or placed around desired shape mandrels that are located around a support of the structure. As the resin is partially cured, a portion of the sleeve segment is moved away from the mandrel, leaving the rest of the sleeve on the mandrel to be attached to the next will-be-fabricated sleeve segment. The process will continue as many times as needed to create a sleeve of a desired length. In various embodiments the strength of the sleeves varies at different locations. In some embodiments the gaps between the sleeves and the structures are filled with gas, liquid, solid, or any other materials.
Abstract:
A sash (62) of a window opening up to 180° and capable of tilting is mounted onto a fixedly installed frame profile (63) and houses a pair of superimposing sashes that fit tightly therein when in closure position, i.e. an upper stationary sash (65) and a lower movable-divertible sash (64), each of the sashes (64,65) provided with laterally extending shafts (49) for connection with sash (62), roller wheels (50) provided onto the shafts (49) of sash (64) that roll within a predefined path created by insert guide profile members (19) and diverter guide members (66,68) to alternately bring sash (64) in a position of superimposing sash (65) and a position of alignment with the same. Lifting mechanisms (46) provided with a regulatory screw (84) for adjusting the pretension of a spring component thereof and thereby the force required by the user for moving the sash (64) are installed within the vertically extending sides of the sash (62).
Abstract:
A helical winding unit includes a plurality of guides arrayed in a peripheral direction of a liner, and adapted to guide each of a plurality of fiber bundles supplied to the helical winding unit to the liner, and an opening member arranged downstream of the plurality of guides in a travelling direction of the fiber bundle, and including an inner peripheral surface for forming a hole, through which the plurality of fiber bundles are inserted from one side to the other side in the axial direction. A plurality of opening surfaces on which the plurality of fiber bundles travel while making contact are formed on the inner peripheral surface of the opening member, and a cross-sectional shape orthogonal to the axial direction of each opening surface is linear.
Abstract:
A multiple layer hollow cylinder is provided. An inner air-tight material is wrapped about at least a portion of a mandrel to form a plurality of first material loops. Each first material loop subsequent to an initial first material loop at least partially overlaps a previous first material loop. A resin-infused fabric material is wrapped over the inner air-tight material to form a plurality of second material loops. Each second material loop subsequent to an initial second material loop at least partially overlaps a previous second material loop. An outer air-tight transparent material is wrapped over the resin-infused fabric material to form a plurality of third material loops. Each third material loop subsequent to an initial third material loop at least partially overlaps a previous third material loop. Energy is directed about the outer air-tight transparent material to cure the resin-infused fabric material to form a hollow cylinder.
Abstract:
Method for manufacturing a continuous composite tube comprising translating a tube liner through a manufacturing station wherein the manufacturing station comprises a winding station and a consolidation station located at a distance downstream of the winding station; winding a composite tape on the tube liner at the winding station for forming a tape layer; consolidating the composite tape on the tube liner at a consolidation zone of the consolidation station by pressing and heating to the tape.
Abstract:
A device for manufacturing an FC component with at least one distributing device for placing at least band-shaped material onto a surface of a tool mold or semi-finished product for manufacturing the FC component, wherein the device has at least one bogie truck that carries the distributing device and a guide way that runs around the surface at least partially in its circumferential direction, on which the bogie truck for traversing the distributing device can be moved relative to the surface, as well as a method for manufacturing a fiber composite component and a component fabricated according to such a method.