Abstract:
A sheet processing apparatus includes a binding unit configured to perform binding processing by pressing a sheet bundle, a motor configured to drive the binding unit to press the sheet bundle, and a motor control unit configured to set a driving current of the motor and an upper limit value of the driving current, the motor control unit being configured to set the driving current when starting activating the motor in a state where the binding unit is not pressing the sheet bundle to a first value, and set the upper limit value of the driving current in a period in which the binding unit is pressing the sheet bundle to a second value less than or equal to the first value.
Abstract:
Methods for forming discrete deformations in web materials are disclosed. In some embodiments, the method involves feeding a web into an apparatus having nips that are formed between intermeshing rolls. The apparatus may be in the form of nested or other arrangements of multiple rolls, in which the web is maintained in substantial contact with at least one of the rolls throughout the process, and at least two of the rolls define two or more nips thereon with other rolls. In some embodiments, rolls can be used to expose a different side of the web for a subsequent deformation step. In these or other embodiments, the rolls can be used to transfer the web between rolls in such a manner that it may offset the rolls and/or web so that subsequent deformations are formed at a different cross-machine direction location than prior deformations.
Abstract:
A set of dies for embossing or debossing is disclosed. The set has a female die (4, 80) and a male die (7, 67) each which has a steel backing plate (5, 47, 75). One of the dies is strongly magnetically attracted to a base plate (1, 68) which results in a weak magnetic attraction between the two dies (4, 7 or 67, 80). The weak magnetic attraction enables the set of dies to be substantially automatically self-aligning. Furthermore, such a set of dies can be used with a cutting and creasing die (50) to permit embossing or debossing simultaneously with cutting and/or folding during the same run.
Abstract:
The present invention relates three-dimensional sheet materials which resist nesting of superimposed layers into one another. More particularly, the present invention provides a three-dimensional, nesting-resistant sheet material having a first side and a second side. The first side comprises at least one region having a plurality of spaced three-dimensional protrusions extending outwardly from the first side which are preferably unitarily formed from the sheet material. To provide the nesting-resistant advantages of the present invention, the protrusions form an amorphous pattern of a plurality of different two-dimensional geometrical shapes. Preferably, the second side comprises a plurality of spaced, three-dimensional hollow depressions corresponding to the protrusions, such that the protrusions are hollow. Of particular interest for certain applications, such as a carrier for an adhesive, the protrusions are separated by an interconnected network of three-dimensional spaces between adjacent protrusions. The three-dimensional, nesting-resistant sheet materials are preferably manufactured in accordance with the present invention utilizing a three-dimensional forming structure comprising an amorphous pattern of spaced three-dimensional recesses separated by interconnected lands. The recesses form an amorphous two-dimensional pattern of interlocking two-dimensional geometrical shapes. The amorphous pattern of interlocking shapes is preferably derived from a constrained Voronoi tessellation of 2-space in accordance with the present invention, wherein the tessellation is constrained by a constraint factor which controls the range of permissible center-to-center spacing of the interlocking shapes. To manufacture the three-dimensional, nesting-resistant sheet materials in accordance with the present invention, a sheet of deformable material is introduced onto the forming structure and permanently deformed into compliance with the forming structure. If desired, the interconnected lands of the forming structure may be coated with a substance before the sheet of deformable material is introduced onto the forming structure.