Abstract:
An air vehicle comprising a main body and a pair of opposing wing members extending substantially laterally from the main body, at least a first propulsion device associated with a first of said wing members and a second propulsion device associated with a second of said wing members, each said propulsion device being arranged and configured to generate linear thrust relative to said main body, in use, the air vehicle further comprising a control module for generating a control signal configured to change a mode of flying of said air vehicle, in use, between a fixed wing mode and a rotary wing mode, wherein, in said fixed wing mode of flying, the direction of thrust generated by the first propulsion device relative to the main body is the same as the direction of thrust generated by the second propulsion device, and in said second mode of flying, the direction of thrust generated by the first propulsion device relative to the main body is opposite to that generated by the second propulsion device.
Abstract:
One example embodiment includes a vertical takeoff and landing (VTOL) unmanned aerial vehicle (UAV). The VTOL UAV includes a flight control system configured to provide avionic control of the VTOL UAV in a hover mode and in a level-flight mode. The VTOL UAV also includes a body encapsulating an engine and the flight control system. The VTOL UAV further includes a propeller disk coupled to the engine and configured to provide vertical thrust in the hover mode and to provide horizontal thrust for flight during the level-flight mode.
Abstract:
An aerial vehicle includes a fuselage, a wing, and a wing shift device. The wing shift device is configured to be coupled to the fuselage. The wing shift device comprises a plurality of apertures for coupling the wing to the aerial vehicle. The plurality of apertures are configured to permit the wing to be shifted in a forward or aft direction along the fuselage based on a center of gravity of the aerial vehicle.
Abstract:
The disclosure generally pertains to a vertical take-off and landing (VTOL) aircraft comprising a fuselage and at least one fixed wing. The aircraft may include at least two powered rotors located generally along a longitudinal axis of the fuselage. The rotor units may be coupled to the fuselage via a rotating chassis, which allows the rotors to provide directed thrust by movement of the rotor units about at least one axis. The VTOL aircraft may include instructions to perform a degraded rotor landing protocol. The degraded rotor landing protocol may include adjusting a power to an operable rotor unit to control a rate of descent and/or slow a rate of acceleration toward a landing surface. The VTOL aircraft may be configured to impact the landing surface from a substantially vertical configuration, and adjust a thrust vector to cause the aircraft to come to rest in a generally upright configuration.
Abstract:
The tricopter type rotary-wing drone includes three arms connected to a frame. Each of the free ends of the arms support a rotor with an axis perpendicular to the respective free end. The rotor is driven in rotation by a motor connected to power supply. The arms are pivotally mounted on the frame. Two arms automatically drive the rotor supported by their respective free ends into a position in which its axis forms an angle between −30° and +150° with the plane of the frame. The third arm automatically pivots, if necessary, into a position in which its free end is spaced apart from the apex being considered of the triangle by an angle between −60° and +60°.
Abstract:
An aerial vehicle includes a fuselage, a wing, and a wing shift device. The wing shift device is configured to be coupled to the fuselage. The wing shift device comprises a plurality of apertures for coupling the wing to the aerial vehicle. The plurality of apertures are configured to permit the wing to be shifted in a forward or aft direction along the fuselage based on a center of gravity of the aerial vehicle.
Abstract:
A MEUV that is able to navigate aerial, aquatic, and terrestrial environments through the use of different mission mobility attachments is disclosed. The attachments allow the MEUV to be deployed from the air or through the water prior to any terrestrial navigation. The mobility attachments can be removed or detached by and from the vehicle during a mission.
Abstract:
An aerial vehicle having a vision based navigation system for capturing an arresting cable situated at a landing site may comprise a fuselage having a propulsion system; an arresting device coupled to the fuselage, the arresting device to capture the arresting cable at the landing site; a camera situated on the aerial vehicle; an infrared illuminator situated on the aerial vehicle to illuminate the landing site, wherein the arresting cable has two infrared reflectors situated thereon; and an onboard vision processor. The onboard vision processor may (i) generate a plurality of coordinates representing features of the landing site using an image thresholding technique, (ii) eliminate one or more coordinates as outlier coordinates using linear correlation, and (iii) identify two of the plurality of coordinates as the two infrared reflectors using a Kalman filter.
Abstract:
One variation of a method for imaging an area of interest includes: within a user interface, receiving a selection for a set of interest points on a digital map of a physical area and receiving a selection for a resolution of a geospatial map; identifying a ground area corresponding to the set of interest points for imaging during a mission; generating a flight path over the ground area for execution by an unmanned aerial vehicle during the mission; setting an altitude for the unmanned aerial vehicle along the flight path based on the selection for the resolution of the geospatial map and an optical system arranged within the unmanned aerial vehicle; setting a geospatial accuracy requirement for the mission based on the selection for the mission type; and assembling a set of images captured by the unmanned aerial vehicle during the mission into the geospatial map.
Abstract:
One example embodiment includes a vertical takeoff and landing (VTOL) unmanned aerial vehicle (UAV). The VTOL UAV includes a flight control system configured to provide avionic control of the VTOL UAV in a hover mode and in a level-flight mode. The VTOL UAV also includes a body encapsulating an engine and the flight control system. The VTOL UAV further includes a propeller disk coupled to the engine and configured to provide vertical thrust in the hover mode and to provide horizontal thrust for flight during the level-flight mode.