Abstract:
A leading end assembly for a movable partition may include a frame, an exterior skin coupled to the frame for covering a leading surface and two opposing side surfaces of the frame, the exterior skin including a leading member forming at least a portion of a leading surface of the leading end assembly and at least two side members, each side member being formed separately from the leading member and forming at least a portion of a lateral side portion of the leading end assembly. Movable partitions may include leading end assemblies and leading end assemblies may be formed by related methods.
Abstract:
A leading end assembly for a movable partition may include a frame, an exterior skin coupled to the frame for covering a leading surface and two opposing side surfaces of the frame, the exterior skin including a leading member forming at least a portion of a leading surface of the leading end assembly and at least two side members, each side member being formed separately from the leading member and forming at least a portion of a lateral side portion of the leading end assembly. Movable partitions may include leading end assemblies and leading end assemblies may be formed by related methods.
Abstract:
The invention relates to a motor vehicle door, in particular a handleless motor vehicle side door. The basic structure of said side door comprises a door leaf (1), a locking element (4, 5, 6), hinged to a motor vehicle body (2), for locking the door leaf (1) in predetermined angular positions in relation to the motor vehicle body (2), and at least one actuator (10, 11) acting upon the door leaf (1). Said actuator (10, 11) causes the door leaf (1) to open to an at least ajar position in relation to the motor vehicle body (2). According to the invention, the actuator (10, 11) is connected to the locking element (4, 5, 6) and directly drives the latter to adjust the door leaf (1).
Abstract:
A door closer comprises a piston cooperating with a rotating pinion. Upon rotation of the pinion in the door opening direction, the piston moves toward the second end of the housing forcing fluid from a second variable volume chamber through a passage to a first variable volume chamber and compressing a spring assembly for storing energy. The spring assembly urges the piston toward the first end of the housing for forcing fluid from the first variable volume chamber to the second variable volume chamber and rotating the pinion in the door closing direction. A controller controls the position of a valve in the passage based on the sensed angular position of a door and the position of the valve for determining the amount of hydraulic fluid flowing through the valve.
Abstract:
Provided is a small plug door device capable of performing an opening/closing operation and a plugging operation with a door drive mechanism for causing a force in a vehicle front-rear direction to act on a door, and further applicable also to a one-panel sliding door. A slide base 12 is installed slidably in a vehicle width direction relative to a fixed base 11. A door drive mechanism 13 for moving one door 104 in a vehicle front-rear direction via a connecting portion 19 has a drive portion 13a including an electric motor 21, a drive wheel member 13b, a follower wheel member 13c, and an endless member 13d, and is installed on the slide base 12. A guide portion 15 guides a shaft portion 14 provided on the connecting portion 19 so as to move the shaft portion 14 in a vehicle width direction. In a double-speed rail 16 in which a pinion 16c is disposed between two racks (16a, 16b), one rack 16b is connected to the slide base 12, the other rack 16a is connected to the door 104 side, and the pinion 16c is connected to the connecting portion 19.
Abstract:
Provided herein is a slide window for a vehicle with which a slide panel can be smoothly moved to easily open and close an opening part without directly manipulating a slide panel 18. A movable body 36 that is moved by being driven by a drive unit 40 is provided, and the slide panel 18 is connected to the movable body 36 via a connection member 48. The slide panel 18 moves with the movement of the movable body 36 driven by the drive unit 40, whereby the opening part 14 is automatically opened and closed. The movable body 36 is guided by the guide sleeve 38, and moves along the slide panel 18. The guide sleeve 38 is positioned and mounted to the resin frame body 16 via guide sleeve brackets 42 provided on a resin frame body 16.
Abstract:
A system, method, and computer storage configured for determining period-ending positions of multiple parts movable by select actuation of corresponding active materials. The operations include receiving, from a work-source sensor, work-source input indicating a distance moved by the work source and a direction of the movement, and determining, based on the work-source input and a first and second status histories, corresponding to a first and a second part, respectively, first and second distances travelled by the parts, respectively. Operations also include calculating, based on the first and second distances determined and first and second period-starting positions, corresponding to the first and second parts, respectively, first and second period-ending positions for the first and second parts, respectively.
Abstract:
An actuating system for a vehicle having a body that defines an access opening includes a panel arranged to selectively open and close at least a first portion of the opening. The system also includes multiple components operatively connected to the panel and adapted to be actuated. The system additionally includes a motor operatively connected to the panel and adapted to actuate the multiple components. A vehicle employing the system and a method for sealing an access opening in a body of a vehicle are also provided.
Abstract:
A door closer comprises a piston cooperating with a rotating pinion. Upon rotation of the pinion in the door opening direction, the piston moves toward the second end of the housing forcing fluid from a second variable volume chamber through a passage to a first variable volume chamber and compressing a spring assembly for storing energy. The spring assembly urges the piston toward the first end of the housing for forcing fluid from the first variable volume chamber to the second variable volume chamber and rotating the pinion in the door closing direction. A controller controls the position of a valve in the passage based on the sensed angular position of a door and the position of the valve for determining the amount of hydraulic fluid flowing through the valve.
Abstract:
A door module of a vehicle door is provided. The door module comprising a carrier plate, a drive unit arranged on the carrier plate for driving a power-operated adjustment device of the door module, and a decoupling means arranged on the carrier plate for attenuating an acoustic excitation of the carrier plate in operation of the drive unit. The decoupling means is formed by at least one slot, which partly separates a portion carrying the drive unit from another portion of the carrier plate and extends around the drive unit or around a fastening point of the drive unit on the carrier plate in a circumferential direction, and at least one web, which connects the portion carrying the drive unit with the other portion of the carrier plate.