Abstract:
A pressure sensitive device interface including a display screen, a framing structure that receives a force applied to the portable electronic device and exhibits strain within the framing structure, a strain gauge that identifies the strain within the framing structure, and a processor coupled to the display screen and the strain gauge and configured to measure the strain identified by the strain gauge and control the user interface according to the measurement of the strain. Among aspects, the framing structure may include a first pair of parallel elements that form opposing elongated outer edges of the portable electronic device, and a second pair of parallel elements that extend perpendicularly between the first pair of parallel elements. Among additional aspects, the processor may be further configured to identify a plurality of gestures with reference to strain metrics.
Abstract:
In one embodiment, a surgical instrument includes a housing linkable with a manipulator arm of a robotic surgical system, a shaft operably coupled to the housing, a force transducer on a distal end of the shaft, and a plurality of fiber optic strain gauges on the force transducer. In one example, the plurality of strain gauges are operably coupled to a fiber optic splitter or an arrayed waveguide grating (AWG) multiplexer. A fiber optic connector is operably coupled to the fiber optic splitter or the AWG multiplexer. A wrist joint is operably coupled to a distal end of the force transducer, and an end effector is operably coupled to the wrist joint. In another embodiment, a robotic surgical manipulator includes a base link operably coupled to a distal end of a manipulator positioning system, and a distal link movably coupled to the base link, wherein the distal link includes an instrument interface and a fiber optic connector optically linkable to a surgical instrument. A method of passing data between an instrument and a manipulator via optical connectors is also provided.
Abstract:
An instrument system that includes an elongate instrument body and an optical fiber sensor is provided. The optical fiber sensor includes an elongate optical fiber that is coupled to the elongate instrument body, wherein a portion of the optical fiber is coupled to the elongate instrument body in a manner to provide slack in the fiber to allow for axial extension of the elongate instrument body relative to the optical fiber.
Abstract:
An instrument system that includes an elongate body, an optical fiber, and a controller is provided. The optical fiber is operatively coupled to the elongate body and has a plurality of strain sensors provided on the optical fiber. Each of the plurality of strain sensors has a reflectivity, wherein one of the plurality of strain sensors has a different reflectivity than another one of the plurality of strain sensors. The controller is operatively coupled to the optical fiber and adapted to: receive one or more signals from the plurality of strain sensors; and determine a position of the elongate body based on the one or more signals.
Abstract:
An instrument system that includes an image capture device, an elongate body, an optical fiber and a controller is provided. The elongate body is operatively coupled to the image capture device. The optical fiber is operatively coupled to the elongate body and has a strain sensor provided on the optical fiber. The controller is operatively coupled to the optical fiber and adapted to receive a signal from the strain sensor and to determine a position or orientation of the image capture device based on the signal.
Abstract:
An interferometric measurement system measures a parameter using at least one optical waveguide. A memory stores reference interferometric pattern data associated with a segment of the optical waveguide. Interferometric detection circuitry detects and stores measurement interferometric pattern data associated with the segment of the optical waveguide during a measurement operation. A spectral range of the reference interferometric pattern of the optical waveguide is greater than a spectral range of the measurement interferometric pattern of the optical waveguide. A processor shifts one or both of the measurement interferometric pattern data and the reference interferometric pattern data relative to the other to obtain a match and to use the match to measure the parameter. An example parameter is strain.
Abstract:
An optical strain gage incorporates an optical waveguide or fiber that includes a sensing section with a fiber Bragg grating, which serves for detecting a strain in a strainable member on which the strain gage is mounted. At locations displaced away from the fiber Bragg grating section, on both sides thereof, the optical waveguide is covered by two fastening elements, which secure the optical waveguide in a force-transmitting manner on the strainable member or a bottom support. Between the two fastening elements, a relatively soft elastic fixing material surrounds the optical waveguide and fixes the fiber Bragg grating section on the strainable member or bottom support in a form-fitting and force-isolating manner.
Abstract:
A modalmetric fibre sensor comprises a multimode sensor fibre (26) and a light source (14) for launching light into the sensor fibre to produce a multimode speckle pattern at an end of the sensor fibre. A single mode fibre (22) receives light from the multimode speckle pattern for transmission to a detector (18). A further multimode fibre (41) is disposed between the sensor fibre (26) and the single mode fibre (22) so that the single mode fibre (22) receives light from the speckle pattern by transmission through the further multimode fibre (41) and the received light includes higher order modes regenerated in the further multimode fibre (41). The light source may be connected to the single mode fibre (22) so as to launch light through the single mode fibre into the multimode sensor fibre (26) via the further multimode fibre (41) and the remote end (28) of the sensor fibre (26) may be mirrored to reflect light back through the sensor fibre to produce the speckle pattern.
Abstract:
A fiber optic sensor based on spiral structure is a multi-loop spiral member formed by spring wire. A plurality of deformation teeth are continuously distributed on the upper surface and the lower surface of the spring wire in a longitudinal direction along the spring wire; in two adjacent loops of the spring wire, the deformation teeth on the lower surface of the upper loop of the spring wire and the deformation teeth on the upper surface of the lower loop of the spring wire correspond to each other in a staggered way. A signal optical fiber is clamped between the deformation teeth on the lower surface of the upper loop of the spring wire and the deformation teeth on the upper surface of the lower loop of the spring wire, and connected to a test unit by a transmission optical fiber.
Abstract:
A method for fabricating a sensor, a sensor so fabricated, and a method for sensing a stimulus are provided. The method includes providing an elongated open channel, such as, a V-groove, in a substrate, the open channel providing a first surface; removing at least some material from at least a portion of the open channel to provide a second surface displaced from the first surface; positioning a diaphragm on the second surface; and positioning an elongated wave-guide having a beveled end in the elongated open channel wherein the beveled end is positioned over the diaphragm to define an interferometric cavity between the diaphragm and the outer surface of the wave-guide. The sensor so fabricated can provide an effective sensor for detecting acoustic emission waves, among other pressure waves.