Abstract:
An optical fiber sensor (100) can be used to measure pressure with high sensitivity and fine resolution. As a (108) at the end of the sensor expands or contracts, the spectrum of a beam reflected from the end of fiber shifts, producing a change linked to pressure exerted on the sensor. Novel aspects of the present inventive sensor include the direct bonding of a silica thin film diaphragm (110) to the optical fiber with localized or confined heating and a uniform thickness of the diaphragm. The resulting sensor has a diameter that matches the diameter of the optical fiber. Because the sensor is all silica, it does not from temperature-induced error. In addition, the sensor can be very sensitive because the diaphragm can be very thin; it can also make highly repeatable measurements due to its very uniform thickness.
Abstract:
An optical fiber sensor (100) can be used to measure pressure with high sensitivity and fine resolution. As a (108) at the end of the sensor expands or contracts, the spectrum of a beam reflected from the end of fiber shifts, producing a change linked to pressure exerted on the sensor. Novel aspects of the present inventive sensor include the direct bonding of a silica thin film diaphragm (110) to the optical fiber with localized or confined heating and a uniform thickness of the diaphragm. The resulting sensor has a diameter that matches the diameter of the optical fiber. Because the sensor is all silica, it does not from temperature-induced error. In addition, the sensor can be very sensitive because the diaphragm can be very thin; it can also make highly repeatable measurements due to its very uniform thickness.
Abstract:
The present invention discloses an apparatus for processing materials, which is used to process the materials introduced thereinto, comprising a working part and a driving part, wherein the working part comprises, in cylindrical form, a first element and a second element arranged within the first element, and a containing chamber for storing materials to be processed being formed by the gap between the first element and the second element, and the second element is driven by the driving part to rotate relatively to the first element, and on the surface of the second element toward the containing chamber, provided is a disturbing part capable of producing axial forces in a direction parallel to the axis of the first element. Thanks to the disturbing part of the second element, the apparatus of the present invention can process materials thoroughly, control retention time of materials within the containing chamber, prevent materials from entering into the mixing blind area and thus make all materials processed thoroughly.
Abstract:
An automated cell injection system and method are described, which can perform automatic, reliable, and high-throughput cell injection of foreign genetic materials, proteins, and other compounds. The system and method overcome the problems inherent in traditional manual injection that is characterized by poor reproducibility, human fatigue, and low throughput. The present invention is particularly suited for zebrafish embryo injection but can be readily extended to other biological injection applications such as mouse embryo, drosophila embryo, and C. elegans injections, capable of facilitating high-throughput genetic research at both academic and industry levels. A novel vacuum based cell-holding device is also provided.
Abstract:
This invention relates to organic salt compositions useful in the preparation of organoclay compositions, polymer-organoclay composite compositions, and methods for the preparation of polymer nanocomposites. In one embodiment, the present invention provides an organoclay composition comprising alternating inorganic silicate layers and organic layers, said organic layers comprising a quaternary phosphonium cation having structure X wherein Ar1, Ar2, and Ar3 are independently C2-C50 aromatic radicals; Ar4 is a bond or a C2-C50 aromatic radical; “a” is a number from 1 to about 200; “c” is a number from 0 to 3; R1 is independently at each occurrence a halogen atom, a C1-C20 aliphatic radical, a C5-C20 cycloaliphatic radical, or a C2-C20 aromatic radical; and R2 is a halogen atom, a C1-C20 aliphatic radical, a C5-C20 cycloaliphatic radical, a C2-C50 aromatic radical, or a polymer chain.
Abstract:
The present invention discloses a materials-processing system, which comprises an inputting subsystem, a processing apparatus coupled to the inputting subsystem and a collecting subsystem coupled to the processing apparatus. The inputting subsystem comprises three or more sample vessels, which can be connected to the processing apparatus. Since the processing system includes multiple sample vessels, which can be grouped into different groups so that each group contains two or more of the multiple sample vessels. High throughput materials transport can be realized by sequentially connecting different groups of sample vessels to the processing apparatus, thereby overcoming a limitation of the prior art that cannot continuously perform multiple batches of materials processing and improving material processing efficiency.
Abstract:
A method for fabricating a sensor, a sensor so fabricated, and a method for sensing a stimulus are provided. The method includes providing an elongated open channel, such as, a V-groove, in a substrate, the open channel providing a first surface; removing at least some material from at least a portion of the open channel to provide a second surface displaced from the first surface; positioning a diaphragm on the second surface; and positioning an elongated wave-guide having a beveled end in the elongated open channel wherein the beveled end is positioned over the diaphragm to define an interferometric cavity between the diaphragm and the outer surface of the wave-guide. The sensor so fabricated can provide an effective sensor for detecting acoustic emission waves, among other pressure waves.
Abstract:
A variable optical attenuator includes a first lens, a MEMS device, a second lens, and a wedge. The first lens is configured to collimate an input light received on a first port and focus an output light on a focus point proximate to a second port. The MEMS device includes a reflection surface having a tilting angle thereof controllable by a control variable. The second lens has a focus point positioned proximate to the reflection surface of the MEMS device. The wedge is positioned between the first lens and the second lens and is configured to refract the input light received from the first lens to enter the second lens and refract the output light received from the second lens to enter the first lens.
Abstract:
An optical circulator has a first collimator; a first block of birefringent material; a first compound polarization rotator; a light angle deflector (e.g., Wollaston prism); a second compound polarization rotator; a second block of birefringent material; and a second collimator. Light from the first fiber exits the first collimator along a first path into a first collimated beam that first hits the central plane on a crossing line between the interface and the central plane such that the first collimated beam exits the light angle deflector along a second path substantially parallel to the longitudinal direction and is received by the second fiber. Light from the second fiber exits the second collimator along the second path into a second collimated beam that exits the light angle deflector along a third path and is received by the third fiber.
Abstract:
A system and method for filtering are disclosed. The system and method include providing first, second, third and fourth fibers for carrying a first, second, third, and fourth optical signals, respectively. The method and system also include providing a holder, a filter, and a first wedge assembly. The holder is for receiving the first fiber, the second fiber, the third fiber, and the fourth fiber therein. The filter is for filtering the first optical signal, the second optical signal, the third optical signal, and the fourth optical signal to provide a first filtered optical signal, a second filtered optical signal, a third filtered optical signal, and a fourth filtered optical signal. The first wedge assembly is disposed between the holder and the filter. The first wedge assembly is for directing the first optical signal towards the filter in a first path, for directing the second optical signal toward the filter in a second path, for directing the third optical signal towards the filter in a third path, and for directing the fourth optical signal toward the filter in a fourth path.