摘要:
Methods of integrating complementary SONOS devices into a CMOS process flow are described. In one embodiment, the method begins with depositing a hardmask (HM) over a substrate including a first-SONOS region and a second-SONOS region. A first tunnel mask (TUNM) is formed over the HM exposing a first portion of the HM in the second-SONOS region. The first portion of the HM is etched, a channel for a first SONOS device implanted through a first pad oxide overlying the second-SONOS region and the first TUNM removed. A second TUNM is formed exposing a second portion of the HM in the first-SONOS region. The second portion of the HM is etched, a channel for a second SONOS device implanted through a second pad oxide overlying the first-SONOS region and the second TUNM removed. The first and second pad oxides are concurrently etched, and the HM removed.
摘要:
According to one embodiment, nonvolatile semiconductor memory device includes: a semiconductor layer; element regions separated the semiconductor layer, the element regions; and a memory cell including a first gate insulating film, a charge storage layer, a second gate insulating film, and a control gate electrode provided above the element regions, a peripheral region including a resistance element including a resistance element layer provided above the semiconductor layer via a first insulating film, a dummy layer provided on a part of the resistance element layer via a second insulating film, a third insulating film provided on the resistance element layer at a first distance from the dummy layer, a fourth insulating film provided on the semiconductor layer at a second distance from the resistance element layer, and a contact piercing the third insulating film, and connected to the resistance element layer, the first distance being shorter than the second distance.
摘要:
A semiconductor processing method to provide a high quality bottom oxide layer and top oxide layer in a charged-trapping NAND and NOR flash memory. Both the bottom oxide layer and the top oxide layer of NAND and NOR flash memory determines array device performance and reliability. The method describes overcomes the corner thinning issue and the poor top oxide quality that results from the traditional oxidation approach of using pre-deposited silicon-rich nitride.
摘要:
Provided are a semiconductor device in which a data re-write operation can be performed a larger number of times and a data re-write operation is performed at a higher speed and a manufacturing method thereof. The semiconductor device includes a substrate, a first gate electrode, a second gate electrode, an insulating film, and a pair of source/drain regions. The first gate electrode is formed of a semiconductor layer containing an impurity of a first conductivity type. The second gate electrode is formed of a semiconductor layer containing an impurity of a second conductivity type. Each of the source/drain regions contains an impurity of the first conductivity type. The source region includes a first source region and a second source region having a concentration of the impurity of the first conductivity type higher than that of the first source region.
摘要:
A MONOS Charge-Trapping flash (CTF), with record thinnest 3.6 nm ENT trapping layer, has a large 3.1 V 10-year extrapolated retention window at 125° C. and excellent 106 endurance at a fast 100 μs and ±16 V program/erase. This is achieved using As+-implanted higher κ trapping layer with deep 5.1 eV work-function of As. In contrast, the un-implanted device only has a small 10-year retention window of 1.9 V at 125° C. A MoN—[SiO2—LaAlO3]—[Ge—HfON]—[LaAlO3—SiO2]—Si CTF device is also provided with record-thinnest 2.5-nm Equivalent-Si3N4-Thickness (ENT) trapping layer, large 4.4 V initial memory window, 3.2 V 10-year extrapolated retention window at 125° C., and 3.6 V endurance window at 106 cycles, under very fast 100 μs and low ±16 V program/erase. These were achieved using Ge reaction with HfON trapping layer for better charge-trapping and retention.
摘要:
Embodiments described herein generally relate to methods of manufacturing charge-trapping memory by patterning the high voltage gates before other gates are formed. One advantage of such an approach is that a thin poly layer may be used to form memory and low voltage gates while protecting high voltage gates from implant penetration. One approach to accomplishing this is to dispose the layer of poly, and then dispose a mask and a thick resist to pattern the high voltage gates. In this manner, the high voltage gates are formed before either the low voltage gates or the memory cells.
摘要:
In a non-volatile memory in which writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film serving as a charge accumulation layer, in order to realize a high efficiency of a hole injection from a gate electrode, the gate electrode of a memory cell comprises a laminated structure made of a plurality of polysilicon films with different impurity concentrations, for example, a two-layered structure comprising a p-type polysilicon film with a low impurity concentration and a p|-type polysilicon film with a high impurity concentration deposited thereon.
摘要:
A semiconductor device and method of making such device is presented herein. The method includes disposing a gate layer over a dielectric layer on a substrate and further disposing a cap layer over the gate layer. A first transistor gate is defined having an initial thickness substantially equal to a combined thickness of the cap layer and the gate layer. A first doped region is formed in the substrate adjacent to the first transistor gate. The cap layer is subsequently removed and a second transistor gate is defined having a thickness substantially equal to the thickness of the gate layer. Afterwards, a second doped region is formed in the substrate adjacent to the second transistor gate. The first doped region extends deeper in the substrate than the second doped region, and a final thickness of the first transistor gate is substantially equal to the thickness of the second transistor gate.
摘要:
The Vertical System Integration (VSI) invention herein is a method for integration of disparate electronic, optical and MEMS technologies into a single integrated circuit die or component and wherein the individual device layers used in the VSI fabrication processes are preferably previously fabricated components intended for generic multiple application use and not necessarily limited in its use to a specific application. The VSI method of integration lowers the cost difference between lower volume custom electronic products and high volume generic use electronic products by eliminating or reducing circuit design, layout, tooling and fabrication costs.
摘要:
A method for fabricating a memory device with U-shaped trap layers over rounded active region corners is disclosed. In the present invention, an STI process is performed before the charge-trapping layer is formed. Immediately after the STI process, the sharp corners of the active regions are exposed, making them available for rounding. Rounding the corners improves the performance characteristics of the memory device. Subsequent to the rounding process, a bottom oxide layer, nitride layer, and sacrificial top oxide layer are formed. An organic bottom antireflective coating applied to the charge trapping layer is planarized. Now the organic bottom antireflective coating, sacrificial top oxide layer, and nitride layer are etched, without etching the sacrificial top oxide layer and nitride layer over the active regions. After the etching the charge trapping layer has a cross-sectional U-shape appearance. U-shaped trap layer edges allow for increased packing density and integration while maintaining isolation between trap layers.