Abstract:
There is provided an analog-to-digital converter capable of performing analog-to-digital conversion with good accuracy. The analog-to-digital converter in accordance with the present invention includes a dither generation circuit 11 which generates dither; an input polarity switching unit 1 which switches a polarity of an input signal; an integrator 2; an integrator output regulator circuit 5 which regulates an output voltage of the integrator 2; a window comparator 3; a control circuit 4 which uses the comparison result of the window comparator 3 to control the input polarity switching unit 1, the integrator output regulator circuit 5, and the window comparator 3 as well as to generate a digital signal. The dither generation circuit 11 generates dither in such a manner that a cycle in which the digital signal is read is an integral multiple of a dither cycle. Further, the dither generation circuit 11 generates dither in such a manner that the number of times the count value is generated in the first half of one cycle of the dither is different from the number of times the count value is generated in the second half cycle thereof.
Abstract:
Apparatus and methods are provided relating to time-to-digital based analog-to-digital converter. An apparatus includes a time-to-digital converter based analog-to-digital converter for generating a first signal and a second signal having a timing relationship between a rising edge of the first signal and a rising edge of the second signal based on a sampled input analog voltage level, and converting the timing relationship into a corresponding time-to-digital representation. The time-to-digital representation is obtained without any voltage comparison and current comparison.
Abstract:
Disclosed are a circuit and a method for an analog-to-digital conversion with programmable resolution. The circuit includes a resistor ladder comprising a plurality of resistors coupled to a plurality of comparators; wherein the resistor ladder is further coupled to a switch logic circuit and a plurality of current sources; and wherein the switch logic circuit is configured to control an operation of a plurality of switches to alter conversion resolution of the ADC, and an error correction circuit coupled to the outputs of the plurality of comparators, wherein the ADC is configured to perform a first conversion step and a second conversion step, and wherein the ADC is configured to perform only the first conversion step when programmed for lower conversion accuracy and higher conversion speed.
Abstract:
An analog-to-digital converter device capable of measuring inputs beyond a supply voltage including: an N bit analog-to-digital converter powered by a supply voltage and a reference voltage; a range resolution stage capable of receiving inputs at higher voltages than the supply voltage, providing an input to the analog-to-digital converter, and outputting a logic value of one for the N+1th bit in response to an input signal higher than the reference voltage; and a bootstrapped input multiplexer stage for connecting low voltage input signals directly to the analog-to-digital converter and for connecting input signals that can exceed the supply voltage to the range resolution stage.
Abstract:
A bootstrapping circuit capable of sampling inputs beyond a supply voltage which includes a bootstrapped switch coupled between an input node and an output node, a first transistor having a first end coupled to a control node of the bootstrapped switch, a first capacitor having a first end coupled to a second end of the first transistor, a second transistor coupled between the first end of the first transistor and a supply node, and having a control node coupled to a first clock signal node, a third transistor coupled between the second end of the first transistor and the supply node, a charge pump having an output coupled to a control node of the third transistor, a level shifter having an output coupled to a second end of the first capacitor, a fourth transistor cross-coupled with, the first transistor, a fifth transistor having a second end coupled to the first end of the fourth transistor, and having a control node coupled to the output of the level shifter, and a sixth transistor coupled between the first end of the fifth transistor and a common node and having a control node coupled to the first clock signal node.
Abstract:
A front end circuit of a voltage regulator is provided. The front end circuit comprises an analog front end, a low-resolution analog-to-digital converter, and a reference voltage provider. The front end circuit emulates the performance of a high-resolution analog-to-digital converter by coupling the analog front end to the low-resolution analog-to-digital converter. The reference voltage provider provides two closely interrelated reference voltages which track each other. The digital design can remove narrow pulses easily. Therefore the front end circuit has a higher noise resistance, and costs much lower than the high-resolution analog-to-digital converter of the prior art.
Abstract:
A data acquisition system uses an analog-to-digital converter (ADC) that includes a prediction feedback element. Using the computing power of a digital signal processor, the system predicts the next sample of the target signal based on pre-defined rules and previous samples. This digital prediction is converted to an analog signal using a digital-to-analog converter (DAC). An analog error summer compares the predicted signal with the target signal and creates an error signal. The digital signal processor uses the prediction error to more accurately predict the next sample. A negative feedback loop is thus formed by this system to drive the prediction error toward zero. Operating on the relatively small error signal in the forward and feedback paths enhances the conversion performance and data transfer efficiency.
Abstract:
The present invention provides a two-system A/D converter, which provides a digital output signal with a higher conversion precision than is achieved by a single-system A/D converter. Conversely, by using a two-system D/A converter with a lower conversion precision, the present invention provides an analog output signal with a higher conversion precision than is achieved by a single-system D/A converter. Further, a digital signal clock changing unit produces data by performing high sampling of the first digital data trains, and the second digital data is synchronized with a second clock through an interpolation processing based on the timing difference between the first and second clocks. A high-precision A/D and D/A converter apparatus is thus realized by using two pulse code modulation coder/decoders (PCM.CODECs) and one digital signal processor (DSP).
Abstract:
An analog-to-digital converter (ADC) controlled in a manner to increase its precision. The signal to be digitized is one input to an analog signal summing means whose output is the input to the ADC. A stepped or dither voltage signal is applied to the other summing means input during each analog signal sampling period of the ADC. The dither voltage steps are equal to the voltage equivalent of one ADC count plus 1/N where N is the number of steps per ADC count chosen to obtain a desired degree of precision in the digital signals that are output by the ADC. The dither voltage step that is combined with the current analog signal sample in the summing means amounts to displacing the sample in steps within each count of the ADC. The ADC converts each combined signal during a sampling interval to a succession of binary digital values which are summed. The result of the summation is a binary number having a value that corresponds more precisely to the true value of the analog signal samples than would be the case if they were converted directly by the ADC.