摘要:
A successive approximation register based time-to-digital converter circuit with a time difference amplifier (TDA). A first TDA which applies a gain value to a time difference between a first signal edge and a first delayed signal edge to generate a first amplified time difference signal, which is feedback to the first TDA, a second TDA which applies a gain value to a time difference between a second signal edge and a second delayed signal edge to generate a second amplified time difference signal, which is feedback to the second TDA, and a finite state machine which sets another gain value, for a next step in a N step conversion until N steps are completed, in the first and the second TDAs based on a bit value from a previous step, wherein the bit value indicates, for a step, whether the first or second amplified time difference signal is ahead.
摘要:
A two-step analog-digital converting circuit includes a comparator, an upper bit counter and a pulse residue conversion unit. The comparator is configured to compare a ramp signal and an input signal, and to output a resulting comparative signal. The upper bit counter is configured to receive the comparative signal and a clock signal, and to output upper bit values corresponding to a first time interval between a generation time point of the ramp signal and a first edge of the clock signal, the first edge of the clock signal immediately preceding a state transition time point of the comparative signal. The pulse residue conversion unit is configured to receive the comparative signal and the clock signal, and to output lower bit values corresponding to a second time interval between the first edge of the clock signal and the state transition time point of the comparative signal.
摘要:
An integrating A-D conversion system which is adapted to provide an analog input voltage in the form of a binary number and comprises the steps of (1) positively integrating a positive analog input voltage for a period of time 2T, (2) subtracting from the resulting voltage in (1) a negative voltage produced by integrating a negative reference voltage -Vr for a period of time T, (3) adding the resulting voltage in (2) with a negative (or positive) voltage produced by integrating the voltage -Vr (or +Vr) for a period of time T/2 according as the resulting voltage in (2) is positive (or negative), (4) adding the resulting voltage in (3) with a negative (or positive) voltage produced by integrating the voltage -Vr (or +Vr) for a period of time T/4 according as the resulting voltage in (3) is positive (or negative), (5) adding the resulting voltage in (4) with a negative (or positive) voltage produced by integrating the voltage -Vr (or +Vr) for a period of time T/8 according as the resulting voltage in (4) is positive (or negative), (6) adding the resulting voltage in (5) with a negative (or positive) voltage produced by integrating the voltage -Vr (or +Vr) for a period of time T/16 according as the resulting voltage in (5) is positive (or negative), . . . . and so on, and obtaining a digital output, representing a binary number whose digits are determined by whether the corresponding resulting voltages in (2), (3), . . . . are positive or negative respectively.
摘要:
The present disclosure relates to a compensation circuit for compensating for an offset voltage that is present in an output signal output by a force sensor. The compensation circuit comprises: voltage divider circuitry, the voltage divider circuitry configured to receive a bias voltage that is also supplied to the force sensor and to output a control voltage derived from the bias voltage, wherein a component mismatch ratio of the voltage divider circuitry is adjustable to correspond to a component mismatch ratio of the force sensor; current generator circuitry configured to receive the control voltage and to generate a compensating current based on the received control voltage; and amplifier circuitry configured to receive the differential signal output by the force sensor and the compensating current and to output a compensated differential output signal in which the offset voltage is at least partially cancelled.
摘要:
A method of operating a pipelined analog-to-digital converter (ADC) having a plurality of output stages includes: performing a first calibration process for the pipelined ADC to update a parameter vector of the pipelined ADC, where components of the parameter vector are used for correcting nonlinearity of the pipelined ADC, where performing the first calibration process includes: providing an input signal to the pipelined ADC; converting, by the pipelined ADC, the input signal into a first digital output; providing a scaled version of the input signal to the pipelined ADC, where the scaled version of the input signal is generated by scaling the input signal by a scale factor; converting, by the pipelined ADC, the scaled version of the input signal into a second digital output; and calibrating the pipelined ADC using the first digital output and the second digital output.
摘要:
For analog-to-digital converters (ADCs) which utilize a feedback digital-to-analog converter (DAC) for conversion, the final analog output can be affected or distorted by errors of the feedback DAC. A digital measurement technique can be implemented to determine timing mismatch error for the feedback DAC in a continuous-time delta-sigma modulator (CTDSM) or in a continuous-time pipeline modulator. The methodology utilizes cross-correlation of each DAC unit elements (UEs) output to the entire modulator output to measure its timing mismatch error respectively. Specifically, the timing mismatch error is estimated using a ratio based on a peak value and a value for the next tap in the cross-correlation function. The obtained errors can be stored in a look-up table and fully corrected in digital domain or analog domain.
摘要:
The configuration of a successive approximation analog to digital converter (ADC) and a method thereof are provided in the present invention. The proposed configuration includes a comparator having an inverting input terminal, a non-inverting input terminal and an output terminal outputting a comparison result, a most significant bit ADC coupled to the non-inverting input terminal, and a least significant bit ADC coupled to the inverting input terminal.
摘要:
A voltage of an input analog signal (105 or 405) can be converted to a signal whose frequency is dependent upon the analog input signal (135 or 435). A frequency divider (115 or 415) can be configured to convert the frequency dependent signal to a frequency divided signal (140 or 440). A first frequency detector (420a) or time detector (120a) can be configured to determine the frequency of the frequency divided signal, thereby creating a first output signal (145a or 445a). A second frequency detector (420b) or time detector (120b) can be configured to determine the frequency of the frequency dependent or non-frequency divided signal, thereby creating a second output signal (145b or 445b). The first and second output signals can be post-processed to generate a digital output signal (130 or 430) that is representative of the input analog signal.
摘要:
An A/D converter including a counter for counting a clock signal to output a digital signal corresponding to an analog input signal; a D/A converter for converting the output signal of the counter into an analog signal; a comparator for comparing the analog input signal with the output signal of the D/A converter to control the counter in accordance with the comparison result; and a clock supply circuit for supplying the counter with the clock signal, wherein the frequency of the clock signal is changed in accordance with a difference signal exhibiting the difference between the analog input signal and the output signal of the D/A converter.
摘要:
An apparatus to convert an input analog signal into a high resolution digital signal in a short conversion time. The device utilizes a high resolution feedback circuit to reduce the high clock generally necessary for high resolution analog-to-digital conversion. Such a device utilizes a low resolution analog-to-digital circuit, which is the only component that must operate at a high clock rate. The device amplifies the difference between the input signal and the feedback signal to obtain a first high resolution digital signal. The device further improves the resolution by combining a dither signal with the amplified difference between the feedback signal and the input digital signal to update the first high resolution digital signal. This updated digital signal is successively added in an accumulator to obtain a higher resolution digital signal.