摘要:
Low density additives and methods of making said additives for composite materials are provided. The low density additives have at least a partial or complete water repellant property that reduces moisture migration, absorption, and retention within a composite material in which it is incorporated into. Active sites are engineered onto the surface of the low density additives to enhance bonding of the additives within a composite matrix. Reduced water movement and enhanced bonding lead to an increased strength and durability performance for a composite material comprising such additives. Composite materials incorporating one or more engineered low density additives as also provided, such composite materials having enhanced strength and durability. Such composite materials may be made from a Hatschek process. The composite materials may be further used as interior and exterior building products.
摘要:
A fiber-cement product which includes a treated cellulose wood pulp fiber. The fiber is treated with fibrillated carboxymethyl cellulose or a carboxyethyl cellulose and poly (diallyldimethyl ammonium)chloride. The fiber can be bleached or partially bleached, refined or unrefined or a mixture of refined and unrefined fiber.
摘要:
A cacao husk can be effectively used. A member comprises a burned material of cacao husk and a base material, and is sieved so that the median diameter of the burned material of cacao husk becomes approx. 85 μm or below. The member functions as a heat conducting material, an electromagnetic shielding member, etc. The content ratio of burned material of cacao husk against the base material can be determined according to the frequency band of the electromagnetic waves to be shielded. In addition, the base material can be one of rubber, paint and cement.
摘要:
A fiber cement composite material that incorporates a blend of bleached and unbleached cellulose fibers as a partial or complete substitute for premium grade cellulose pulp is provided. Bleached standard grade cellulose fibers are used in conjunction with unbleached, standard grade cellulose fibers to provide a fiber cement composite product having substantially equal or even superior flexibility and strength as an equivalent fiber cement composite material reinforced by premium grade, unbleached cellulose fibers. A synergistic combination of bleached and unbleached standard grade cellulose fibers to produce a composite material with the desired properties previously achievable only through the use of premium grade cellulose pulp.
摘要:
Spacer compositions and products may include a biopolymer component, a plant fiber component, and a weighting agent component, and in further non-limiting embodiments may include xanthan gum, a blend of plant fibers, and a weighting agent component. These spacer compositions and spacer products may be utilized in well fluid operations, including well cementing operations and well completion operations.
摘要:
A cellular structure thermal insulation material includes by weight as compared to the material total weight: from 4 to 96% of a hydraulic binder, which prior to being contacted with water, includes at least one phase selected from C3A, CA, C12A7, C11A7CaF2, C4A3$ (Yee lemite), C2A(1-x)Fx (where x belongs to [0, 1]), hydraulic amorphous phases having a C/A molar ratio ranging from 0.3 to 15 and such that cumulated amounts of Al2O3 of these phases be ranging from 3 to 70% by weight of the hydraulic binder total weight, from 4 to 96% of at least one filler, the material having a pore volume ranging from 70% to 95%. The use of a mineral foam for making thermal insulation material as well as methods for making the mineral foam are also described.
摘要:
A method for making a low embodied energy cementitious mixture by blending a variety of post-consumer wastes, post-industrial wastes, as well as renewable, organic and recyclable materials with Portland cement or a material having similar cementitious properties. The primary materials are recycled concrete, coal-fired fly ash waste, silica fume, post-industrial waste, organic or inorganic waste fibers. Glass, brick, ceramics, ground tires and other waste products, as well as virgin aggregate can also be included in the low embodied energy cementitious mixture.
摘要:
A heat-insulating, fire-proof, water-resistant, permeable-to-air, flexible lightweight concrete with a volume-density below 500 kg/m3, made with polystyrene pearl is equally suitable for heat-, and sound-insulation of walls and slabs, as well as decreasing their water permeability or water-absorbing capacity, as well as increasing their resistance to fire at the same time keeping their ability to be permeable-to-air and humidity, for renovation old buildings or building new buildings. Its composition is: polystyrene pearl, or recycled polystyrene of 1-10 mm diameter, water, cement and organic (polymer) binding material mixed with cement: such homo-, co-, and terpolymers—which are water-soluble and/or can be dispersed in water. Resulting from the use of organic (polymer) binding material, the polystyrene pearls can easily mixed with the inorganic binding material and water. The heat-insulating material produced this way can be even 100 kg/m, depending on the quantity of the binding materials.
摘要:
A phosphate cement composition is provided. The cement composition comprises about 10 to 40 percent by weight calcium or magnesium oxide, about 10 to 40 percent by weight acid phosphate, and about 10 to 50 percent by weight vermiculite or perlite or mixture thereof.
摘要:
Methods and a kit. A cement forming method includes nucleating an acidic metallophosphate reaction mixture with first particles, resulting in forming a settable metallophosphate cement from the acidic metallophosphate reaction mixture. The first particles include a first metal oxide. Each particle of the first particles independently have a particle size in a range from about 15 microns to about 450 microns. A method for applying cement includes seeding a solution with particles, resulting in forming a settable cement from the solution. The particles have a size in a range from about 15 microns to about 450 microns. The solution includes a first metal oxide reacting with phosphate. The settable cement is applied to a substrate. A cement application kit is also described.