摘要:
A fibre cement composition comprising at least one hydraulic binder, an organic processing aid fibre as the sole organic fibre within the fibre cement composition, and at least one inorganic fibre, which exhibits excellent fire resistance and mechanical properties.
摘要:
The present invention relates to methods for the production of fresh cured fiber cement products. More particularly, the present invention provides methods for the production of fresh fiber cement products comprising cured fiber cement waste material, at least comprising the steps of: (a) Providing a cured fiber cement waste powder by comminuting cured fiber cement waste material; (b) Providing an aqueous fiber cement slurry comprising water, cementitious binder, natural or synthetic fibers and said cured fiber cement waste powder; (c) Forming a green fiber cement sheet from said aqueous fiber cement slurry; and (d) Autoclave-curing said green fiber cement sheet thereby providing a fresh fiber cement product.
摘要:
Disclosed herein are low density fiber cement articles, such as fiber cement building panels and sheets, comprised of multiple overlaying fiber cement substrate layers having small and uniform entrained air pockets and low density fillers distributed throughout. The combination of entrained air pockets and low density fillers provide a low density fiber cement matrix with physical and mechanical properties similar to comparable low density fiber cement matrix without entrained air pockets.
摘要:
Low density additives and methods of making said additives for composite materials are provided. The low density additives have at least a partial or complete water repellant property that reduces moisture migration, absorption, and retention within a composite material in which it is incorporated into. Active sites are engineered onto the surface of the low density additives to enhance bonding of the additives within a composite matrix. Reduced water movement and enhanced bonding lead to an increased strength and durability performance for a composite material comprising such additives. Composite materials incorporating one or more engineered low density additives as also provided, such composite materials having enhanced strength and durability. Such composite materials may be made from a Hatschek process. The composite materials may be further used as interior and exterior building products.
摘要:
This invention relates to a formulation with the addition of low density additives of volcanic ash, hollow ceramic microspheres or a combination of microspheres and volcanic ash or other low density additives into cementitious cellulose fiber reinforced building materials. This formulation is advantageously lightweight or low density compared as compared to current fiber cement products without the increased moisture expansion and freeze-thaw degradation usually associated with the addition of lightweight inorganic materials to fiber cement mixes. The low density additives also give the material improved thermal dimensional stability.
摘要:
An energy efficient method for making a gypsum cellulose fiberboard comprising adding a first portion of cellulose fiber to gypsum before the gypsum and cellulose fiber are co-calcined in a reactor, adding a second portion of cellulose fiber to the slurry after it leaves the reactor to form a second slurry, depositing the slurry to form a mat, dewatering the mat, rehydrating the mat and then finishing the mat to form a final gypsum cellulose fiberboard. A reduction of up to about 40% to 50% of steam energy used can be achieved when the second portion of added cellulose fiber is 50% or more of the total cellulose fiber used in the final board compared to gypsum cellulose board made with the same ingredients but when all of the fiber is added to the gypsum prior to the reactor.
摘要:
A fiber-reinforced building material in one embodiment incorporates cellulose fibers that are chemically treated with a dispersant to impart improved dispersibility to the fibers. The fibers are treated with a dispersant which deactivates the hydroxyl sites of the fiber surfaces and in some cases, making the fiber surface more hydrophobic. The dispersant inhibits the hydroxyl groups on the cellulose fiber surface from bonding with hydroxyl groups of other fibers and from bonding with hydroxyl groups of the same fiber, thereby significantly reducing inter-fiber and intra-fiber hydrogen bonding. The treated fibers can be readily dispersed and uniformly distributed throughout a mixture without re-clustering or reclumping once the mechanical mixing action stops. The chemically treated fibers with improved dispersibility improve the fiber distribution and reinforcing efficiency, which in turn improves key physical and mechanical properties of the material such as the modulus of rupture, z-direction tensile strength, and toughness, and surface finishes. With improved fiber reinforcing efficiency, less dosage of fiber is needed to achieve the required physical and mechanical properties.
摘要:
The problems to be solved by the invention are to provide a fiber reinforced cement composition for obtaining a fiber reinforced cement product which is excellent in bending strength, dimensional stability and installation property such as handling property, flexibility performance and nail performance, as well as a process for manufacturing the product.Namely, the fiber reinforced cement composition comprises the following raw materials: a hydraulic inorganic material, a siliceous material and a woody reinforcement, wherein the siliceous material is a mixture of an average particle size of not less than 15 μm and not more than 50 μm which is burned ash of coal and/or rhyolite and an average particle size of not less than 1 μm and not more than 15 μm which is burned ash of coal and/or rhyolite.The effects of the present invention, it is possible to obtain a fiber reinforced cement product having good bending strength, dimensional stability and installation property such as handling property, flexibility performance and nail performance.
摘要:
A fiber-reinforced building material in one embodiment incorporates cellulose fibers that are chemically treated with a dispersant to impart improved dispersibility to the fibers. The fibers are treated with a dispersant which deactivates the hydroxyl sites of the fiber surfaces and in some cases, making the fiber surface more hydrophobic. The dispersant inhibits the hydroxyl groups on the cellulose fiber surface from bonding with hydroxyl groups of other fibers and from bonding with hydroxyl groups of the same fiber, thereby significantly reducing inter-fiber and intra-fiber hydrogen bonding. The treated fibers can be readily dispersed and uniformly distributed throughout a mixture without re-clustering or reclumping once the mechanical mixing action stops. The chemically treated fibers with improved dispersibility improve the fiber distribution and reinforcing efficiency, which in turn improves key physical and mechanical properties of the material such as the modulus of rupture, z-direction tensile strength, and toughness, and surface finishes. With improved fiber reinforcing efficiency, less dosage of fiber is needed to achieve the required physical and mechanical properties.