摘要:
The present invention provides the octasilane 2,2,3,3-tetrasilyltetrasilane 1, compositions comprising one or more additional constituents that are not 1 as well as 2,2,3,3-tetrasilyltetrasilane 1, processes for preparing 2,2,3,3-tetrasilyltetrasilane 1 and mixtures of higher hydridosilanes that include 1. The present invention further provides for the use of 1 and mixtures of higher hydridosilanes including 1 for deposition of silicon-containing material.
摘要:
A compound that is 2,2,4,4-tetrasilylpentasilane, chemical compositions comprising same, methods of making and purifying 2,2,4,4-tetrasilylpentasilane, the purified 2,2,4,4-tetrasilylpentasilane prepared thereby, and methods of forming silicon-containing materials using 2,2,4,4-tetrasilylpentasilane as a precursor.
摘要:
A compound that is 2,2,4,4-tetrasilylpentasilane, chemical compositions comprising same, methods of making and purifying 2,2,4,4-tetrasilylpentasilane, the purified 2,2,4,4-tetrasilylpentasilane prepared thereby, and methods of forming silicon-containing materials using 2,2,4,4-tetrasilylpentasilane as a precursor.
摘要:
High purity cyclohexasilane and a method for increasing the purification efficiency thereto are provided. The method for producing cyclohexasilane of the present invention is characterized in that, in distilling crude cyclohexasilane to obtain purified cyclohexasilane, the absolute pressure during distillation is set to 2 kPa or less, and the heating temperature of crude cyclohexasilane is set to 25 to 100° C. The cyclohexasilane of the present invention contains pure cyclohexasilane at a rate of 98% by mass or more and 100% by mass or less.
摘要:
Methods and systems for producing silane that use electrolysis to regenerate reactive components therein are disclosed. The methods and systems may be substantially closed-loop with respect to halogen, an alkali or alkaline earth metal and/or hydrogen.
摘要:
A process for hydrogenating chlorosilanes in a reactor, wherein at least two reactant gas streams are introduced separately from one another into a reaction zone, wherein the first reactant gas stream comprising silicon tetrachloride is conducted via a first heat exchanger unit in which it is heated and is then conducted through a heating unit which heats it to a first temperature before the first reactant gas stream reaches the reaction zone, and wherein the second reactant gas stream comprising hydrogen is heated by a second heat exchanger unit to a second temperature, wherein the first temperature is greater than the second temperature, and then introduced into the reaction zone, such that the mixing temperature of the two reactant gas streams in the reaction zone is between 850° C. and 1300° C., and said reactant gas streams react to give product gases comprising trichlorosilane and hydrogen chloride, wherein the product gases obtained in the reaction are conducted through said at least two heat exchanger units and preheat the reactant gas streams of the reaction by the countercurrent principle, wherein the flow passes first through the first heat exchanger unit and then through the second heat exchanger unit. A reactor for hydrogenating chlorosilanes, comprising two gas inlet devices through which reactant gases can be introduced separately from one another into the reactor, and at least one gas outlet device through which a product gas stream can be conducted, at least two heat exchanger units which are connected to one another and which are suitable for heating reactant gases separately from one another by means of the product gases conducted through the heat exchanger units, and a heating zone which is arranged between a first heat exchanger unit and a reaction zone and in which there is at least one heating element.
摘要:
Provided are a catalyst for producing a higher silane with high yield at low cost by performing a reaction at relatively low temperature while inhibiting decomposition into solid silicon; and a process using the catalyst for producing a higher silane. The catalyst for producing a higher silane includes a porous oxide and is used to convert a lower silane to a higher silane wherein the porous oxide has at least regularly arranged pores and is primarily composed of silicon oxide, wherein a content of alkali metals and alkali earth metals in the porous oxide is not less than 0.00 wt % and not more than 2.00 wt %.
摘要:
The present invention relates to a continuous process for hydrogenating halogen-containing silane compounds having at least three silicon atoms, in which at least one halogen-containing silane compound having at least three silicon atoms and at least one hydrogenating agent are converted continuously to form at least one hydridosilane compound having at least 3 silicon atoms and oxidized hydrogenating agent, and wherein oxidized hydrogenating agent is withdrawn and reduced, and the reaction product of this reduction reaction is sent back to the hydrogenation, to the hydridosilane compounds obtainable by this process and to the use thereof.
摘要:
A storage material for obtaining H-silanes which is present in the form of a hydrogenated polysilane (HPS), as a pure compound or as a mixture of compounds having on average at least six direct Si—Si bonds, the substituenis of which predominantly consist of hydrogen and in the composition of which the atomic ratio of sabstitueot to silicon is at least 1:1.
摘要:
The invention relates to a method for producing hydridosilanes from halosilanes by a) reacting i) at least one halosilane of the generic formula SinX2n+2 (with n≧3 and X═F, Cl, Br and/or I) with ii) at least one catalyst of the generic formula NRR'aR″bYc with a=0 or 1, b=0 or 1, and c=0 or 1, and formula (I), wherein aa) R, R′ and/or R″ are —C1-C12 alkyl, —C1-C12 aryl, —C1-C12 aralkyl, —C1-C12 aminoalkyl, —C1-C12 aminoaryl, —C1-C12 aminoaralkyl, and/or two or three groups R, R′ and R″ (if c=0) together form a cyclic or bicyclic, heteroaliphatic or heteroaromatic system including N, with the proviso that at least one group R, R′ or R″ is unequal —CH3 and/or wherein bb) R and R′ and/or R″' (if c=1) are —C1-C12 alkylene, —C1-C12 arylene, —C1-C12 aralkylene, —C1-C12 heteroalkylene, —C1-C12 heteroarylene, —C1-C12 heteroaralkylene and/or —N═, or cc) (if a=b=c=0) R═≡C-R′″ (with R′″═—C1-C10 alkyl, —C1-C10 aryl and/or —C1-C10 aralkyl), while forming a mixture comprising at least one halosilane of the generic formula SimX2m+2 (with m>n and X═F, Cl, Br and/or I) and SiX4 (with X═F, Cl, Br and/or I), and b) hydrogenating the at least one halosilane of the generic formula SimH2m+2 while forming a hydridosilane of the generic formula SimH2m+2. The invention also relates to the hydridosilanes producible according to said method and to their use.