Abstract:
A turbocharger for an internal combustion engine includes a bearing housing with a bearing bore and a semi-floating bearing disposed within the bore. The turbocharger also includes a shaft having a first end and a second end, wherein the shaft is supported by the bearing for rotation about an axis within the bore. The turbocharger also includes a turbine wheel fixed to the shaft proximate to the first end and configured to be rotated about the axis by post-combustion gasses emitted by the engine. Additionally, the turbocharger includes a compressor wheel fixed to the shaft proximate to the second end and configured to pressurize an airflow being received from the ambient for delivery to the engine. Furthermore, the turbocharger includes a plate secured within the bearing housing and configured to prevent rotation of the bearing about the axis. An internal combustion engine employing such a turbocharger is also disclosed.
Abstract:
A heat exchanging system for an internal combustion system is disclosed herein. The heat exchanging system includes a pusher fan assembly, positioned between the internal combustion engine and a radiator. The pusher fan assembly enables air-flow towards the radiator. The pusher fan assembly includes a central hub, a plurality of blades, and a nose. The blades include a first end coupled to the central hub and a second end extending radially outwards from the central hub. The nose includes a base portion and a contoured outer portion. The base portion has a radius, R. The contoured outer portion has a maximum length, L dimension along axis of rotation. The contoured outer portion has an angular profile, ρ defined by formula ρ=(R*R+L*L)/2*R.
Abstract translation:本文公开了一种用于内燃系统的热交换系统。 热交换系统包括位于内燃机和散热器之间的推进器风扇组件。 推进器风扇组件能够朝向散热器进行气流。 推动器风扇组件包括中心毂,多个叶片和鼻部。 叶片包括联接到中心毂的第一端和从中心毂径向向外延伸的第二端。 鼻部包括基部和轮廓外部。 基部具有半径R.轮廓外部具有沿着旋转轴线的最大长度L尺寸。 轮廓外部具有角度轮廓, 由公式&rgr; =(R * R + L * L)/ 2 * R定义。
Abstract:
A supercharged liquid-cooled internal combustion engine is provided. In one example, a bearing of a turbocharger is cooled in response to a thermal load of the turbocharger while a flow of coolant to a ventilation vessel is controlled. In this way, a coolant flow rate to the bearing and a ventilation vessel may be provided based on cooling demand.
Abstract:
A vehicle includes an intercooler cooling fluid circuit coupled to and in fluid communication with a turbocharger of an internal combustion engine for circulating a flow of cooling fluid to the turbocharger to cool the turbocharger. A turbocharger cooling control valve controls fluid flow between the turbocharger and an intercooler. The turbocharger cooling control valve directs the flow of the cooling fluid to the intercooler when the engine is running, directs the flow of cooling fluid to the turbocharger when the engine is not running. The vehicle uses an intercooler pump for circulating the cooling fluid to both the intercooler when the vehicle is running and the turbocharger when the vehicle is not running.
Abstract:
In a system for cooling transmission oil in a vehicle with a hydraulic oil cooling circuit 20, an engine cooling subsystem 18 which uses cooling fluid, and a transmission oil cooling circuit 22, the transmission oil circuit 22 comprises first and second heat exchangers 28, 38. The first heat exchanger 28 is provided with cooling fluid from the engine cooling subsystem 18 to cool the transmission oil and the second heat exchanger 38 is provided with oil from the hydraulic oil cooling circuit 20 to cool the transmission oil.
Abstract:
There are provided first and second water supply passages to supply cooling water from an engine to first and second center housings of first and second turbochargers, and first and second return passages to return the cooling water from the first and second turbochargers to the engine. A cooling-water connection portion of the first water supply is located above the level of a cooling-water connection portion of the second water supply passage. A vapor releasing passage is provided between the second turbocharger and an upper tank provided on the outside of an engine body at a position located above the connection portion of the second return passage of the second turbocharger. Accordingly, the function of vapor releasing from the first and second turbochargers can be improved, thereby increasing the layout flexibility around the engine.
Abstract:
A valve arrangement for venting a coolant circuit of an internal combustion engine having several subcircuits includes a valve which is in fluid communication with a primary vent line extending from one of the subcircuits. At least one secondary vent line is in fluid communication with the valve and extends from another one of the subcircuits. The primary and secondary vent lines are connectable to a shared third vent line which feeds into a compensating reservoir arranged at a geodetically highest point in the coolant circuit. The valve is constructed to establish a continuous fluid communication of the primary vent line with the compensating reservoir via the third vent line and to establish a fluid communication of the secondary vent line with the compensating reservoir via the third vent line only in the presence of air bubbles in the secondary vent line.
Abstract:
An opposed piston engine includes at least one cylinder with inlet and exhaust ports and opposed pistons disposed in the cylinder for reciprocating opposed motion toward and away from each other. An auxiliary system pumps liquid coolant separately to the cylinder and pistons. Another auxiliary system controls the flow of intake and exhaust gas in the engine.
Abstract:
An invention relates to a cooling system for a vehicle comprising an engine, an engine radiator, and an engine cooling circuit. A second cooling circuit encompassing at least one cooling component can be coupled to the engine radiator and is connected to a coolant recirculation pipe of the engine cooling circuit by means of a branch of a coolant supply pipe of the engine cooling circuit and a recirculation pipe of the cooling component. The second cooling circuit can be alternatively coupled to the coolant recirculation pipe or a coolant supply pipe at the output end in accordance with operating conditions of the engine.
Abstract:
A turbocharger includes a housing, and a turbine shaft supported in a center hole in the housing through rolling bearings. A tank portion for storing lubrication oil is formed in the housing, and the lubricating oil is supplied from the tank portion to the rolling bearings through wick members extending from the tank portion respectively to the rolling bearings. The wick member includes a bundle of fibers made of a plastics material, and a distal end portion thereof is separated into a fibrous condition, and this distal end portion is held in contact with the bearing. The lubricating oil is supplied to the bearing by a capillary action of the wick member.