Abstract:
A plasma display apparatus includes a plurality of display element electrodes each constituted of a pair of electrode segments having linear edges opposing each other, with a predetermined distance provided therebetween, the width of each of the electrode segments becoming narrower in the direction away from the associated one of the linear edges. The plasma display apparatus also includes a barrier structure, the inner surfaces of which being disposed along the outer ends of the plurality of display element electrodes and thereby defining a plurality of cells each of which is to be activated by the associated one of the plurality of display element electrodes so as to emit light. In the plasma display apparatus, ultraviolet rays caused by a discharge are efficiently transmitted to phosphor members on the surfaces of cells to emit light with a reduced loss of energy.
Abstract:
A plasma display panel includes a first substrate and a second substrate, the first substrate and the second substrate being provided with a predetermined gap therebetween. Barrier ribs are formed in a non-striped pattern between the first substrate and the second substrate, the barrier ribs defining a plurality of discharge spaces. A plurality of address electrodes are formed on the first substrate along a direction (y), the address electrodes being formed within and outside discharge spaces. A plurality of sustain electrodes are formed on the second substrate along a direction (x), the sustain electrodes being formed within and outside discharge spaces. The address electrodes include large electrode portions provided within discharge spaces and small electrode portions provided outside the discharge spaces. If a width of large electrode portions is AW, a width of small electrode portions is Aw, and a distance between barrier ribs along direction (x) is D, AW is larger than Aw, and AW is 40-75% of D.
Abstract:
A plasma display panel including a first panel, address electrodes formed on the first panel in a predetermined pattern, a first dielectric layer formed on the first panel and covering the address electrodes, a partition structure having unit partitions discontinuously formed on the first dielectric layer to partition a discharge space, the unit partitions being parallel to the address electrodes and each having auxiliary partitions, red, green and blue phosphor layers coated in the partitioned discharge space, a second panel, which is coupled to the first panel to form the discharge space and which is transparent, a plurality of pairs of sustaining electrodes formed on an inner surface of the second panel and having sets of first and second electrodes at a predetermined angle with respect to the address electrodes, and a second dielectric layer formed on the second panel and covering the sustaining electrodes.
Abstract:
A surface-discharge type plasma display panel, comprises: a plurality of displaying lines each including a first maintaining electrode and a second maintaining electrode, forming a discharging gap therebetween; and a dielectric layer coverring the first and second maintaining electrodes. A mutual positional relationship between a first maintaining electrode and a second maintaining electrode is alternatively changed from one displaying line to another. Each first maintaining electrode and/or each second maintaining electrode are constructed in a manner such that two adjacent maintaining electrodes are electrically connected to each other through at least one connecting means.
Abstract:
A plasma display device having a composite back panel including a metal substrate having a predetermined thermal coefficient of expansion (TCE) and a ceramic barrier rib structure which are co-fired at a pre-determined temperature, the ceramic barrier rib structure is composed from a first glass material having a TCE which is less than the TCE of the metal substrate, the first glass formulated to flow-back at the co-firing temperature; and a second glass material having a TCE which is greater than the TCE of the metal substrate, wherein the first and the second glass materials are mixed in a proportion to produce a composite ceramic material having a TCE which is substantially equal to the TCE of the metal substrate. The plasma display device having the ceramic barrier rib structure composed of the first and second glasses provides control of the TCE to minimize stresses in the final produce and assure panel flatness. A green ceramic tape defined by percentage weight formulation as: 40-70% glass 1, 1-15% glass 2, 10-30% solvent, 10-40% resin, wherein glass 1 is defined by percentage weight formulation as: 15-50% ZnO, 10-45% MgO, 5-30%, BaO, 10-45% SiO.sub.2, and glass 2 is defined by percentage weight formulation as: 10-80% SiO.sub.2, 5-60% B.sub.2 O.sub.3, 5-30% BaO, 0-60% Al.sub.2 O.sub.3. The green tape ceramic including the aforementioned glass 1 and glass 2 promotes solidification and densification.
Abstract:
A plasma display panel for preventing a discharging operation in a non-displaying area and thus progressing the contrast ratio according to the present invention is disclosed. The plasma display panel comprises a first substrate and a second substrate which are provided with each of inner faces opposite to each other. Between the first and second substrates, barrier ribs arranged toward a first direction are separated parallel to each other with a space. On the inner face of the first substrate, first electrodes are arranged parallel with each other toward a second direction which is orthogonal with the first direction. In addition, dot type second electrodes, which are connected with a pair of first electrodes and are exposed to a space between the pair of first electrodes, are arranged on the inner face of the first substrate. Between the barrier ribs on the inner face of the second substrate, there are placed third electrodes which are arranged parallel with the first direction. Here, a unit cell is defined as an area which is limited by the barrier ribs and includes a pair of first electrode.
Abstract:
In an AC type plasma display panel in which a discharge electrode and an dielectric material layer are formed on its substrate on the display surface, it has a structure in which a thin color filter layer containing fine inorganic pigment particles as its main component is formed in contact with or within the dielectric material layer. The color filter layer containing the fine pigment particles as its main component can have good performance by arranging that the color filter layer has a thickness of 0.5 through 5 microns, and the fine pigment particles have average particle size of 0.01-0.15 microns.
Abstract:
A plasma display panel including a pair of substrates comprises a mixture of discharge gases contained between the substrates; the mixture consists of neon gas, xenon gas and krypton gas, wherein a percentage content of the krypton gas is selected in the range from 1 to 14 percent of the mixture, whereby near-infrared rays radiated from the xenon gas during the gas discharge is retarded while the operational margin of the AC driving voltage is preferably maintained.
Abstract:
A plasma display panel includes a front substrate; a plurality of row electrodes provided on an inner surface of the front substrate; a dielectric layer provided on the inner surface of the front substrate so as to cover the row electrodes; a rear substrate spaced apart from the front substrate to form a discharge space therebetween; a plurality of column electrodes provided on an inner surface of the rear substrate; a fluorescent material layer covering the column electrodes, the fluorescent material layer including red, green and blue emitting portions. The width of a column electrode is set to be different from others, corresponding to a different portion of the fluorescent material layer covering the column electrode.
Abstract:
This invention relates to a method for manufacturing a flat display panel device suitable for being applied to a plasma display panel and the like. In the method comprising forming a barrier-ridge-forming layer over a whole surface of a substrate having an electrode pattern, then removing from barrier-ridge-forming layer the unnecessary portions by jetting an abrasive, so as to form a barrier ridge, and further filling the removed portions with fluorescent paste layer and removing from fluorescent paste layer the unnecessary portions by jetting the abrasive until a given discharge space can be kept. Organic material particles coated with an inorganic material are used as the abrasive for removing the barrier-ridge-forming layer and/or the fluorescent paste layer. By coating the organic material with the inorganic material, the abrasive particles become roundish. Thus, even if these are used as the abrasive, it is not feared that they injury the surfaces of the glass substrate and the address electrode.