Abstract:
A cutting jig for cutting a plate material positioned on a supporting surface, includes a jig body, a rolling blade rotatably supported with the jig body to roll on and cut the plate material, and paired holding parts rotatably supported with the jig body at respective sides of the rolling blade in a direction along a rotation axis of the rolling blade to roll on and hold adjoining portions of a cut portion of the plate material, each adjoining portion on which a stress acts due to the rolling blade cutting the plate material at the cut portion.
Abstract:
There is provided a vehicle seat including: a seatback frame that includes a plate-shaped back face panel portion; a headrest; a seatback pad that is provided at a front face side of the seatback frame, with a space formed between the seatback pad and the back face panel portion; a back spring that is formed from wire and includes left and right side portions extending in an up-down direction of the seatback, at both seat width direction sides inside the space, and includes a lower portion coupling together lower end portions of the left and right side portions in the seat width direction, wherein the left and right side portions are supported so as to be capable of undergoing displacement toward a seat width direction outer side with respect to the seatback frame, and support the seatback pad from a seat rear side.
Abstract:
A substrate support device includes a plate portion including a heater plate that includes a heating element provided in the heater plate, and also including a first cooling plate provided on a bottom surface of the heater plate and having a first flow path, and a second cooling plate provided on a top surface of the heater plate and having a second flow path; and a shaft portion supporting the plate portion and including a line connected to the heating element to supply an electric current to the heating element, and a tube supplying a coolant to the first cooling plate and the second cooling plate, the line and the tube being provided inside the shaft portion.
Abstract:
An apparatus comprises a display, a communication device, and a controller. The communication device performs communication with a remote control system. The system comprises a control head, a shift actuator, and a throttle actuator. The head designates a shift position and a throttle opening. The shift actuator drives a shift mechanism in accordance with the shift position. The throttle actuator drives the throttle mechanism in accordance with the throttle opening. The communication device receives at least one of the shift position, the throttle opening and ID data of malfunction in the system. The controller causes the display to display the shift position, the throttle opening, or the type or cause of the malfunction.
Abstract:
A clutch apparatus is equipped with two clutch structures having a clutch drum therein. A driven plate and a piston are provided in the clutch drum of each clutch structure, and a primary coned disc spring and a secondary coned disc spring, which are ring-shaped, are provided between the driven plate and the piston. A flat portion is formed on an inner peripheral portion of a convex surface of the primary coned disc spring, and the flat portion can come into contact with a counter member first when a load is applied. A load in a flat condition due to elastic deformation is adjusted by the flat portion so as to be a desirable value. Blanks and of the primary coned disc spring and the secondary coned disc spring can be obtained from one sheet of material having the same thickness. In this case, the flat portion is formed by press forming on an inner peripheral portion of the blank in view of the shape thereof after bending forming is performed.
Abstract:
There is provided a vehicle seat including: a seat cushion on which an occupant sits, and that supports the buttocks and thighs of the occupant; a rotation portion that is provided at a location on the seat cushion that is contacted by the buttocks of the occupant, and that is capable of rising with respect to a seat face of the seat cushion, then rotating with the seat up-down direction as an axial direction, and descending after rotating.
Abstract:
A seat operating device comprising: an operation member; a first clutch member that is connected to an adjusting mechanism, and in which is formed a first cut-out portion that opens outwardly in a rotation radial direction of the first clutch member; a second clutch member that is connected to another adjusting mechanism, and in which is formed a second cut-out portion that opens outwardly in a rotation radial direction of the second clutch member; and a switching member having a first engaging portion and a second engaging portion that are positioned at mutually opposite sides across a rotational center. When the switching member is positioned at one end of a range of movement of the switching member, the first engaging portion engages with the first cut-out portion, and, when the switching member is positioned at another end of the range of movement, the second engaging portion engages with the second cut-out portion.
Abstract:
A flexure includes a metal substrate whose front end supports a slider and a wiring part having a base insulating layer and a conductor layer formed on the base insulating layer. The wiring part includes a normal wiring part that is on the metal substrate and an aerial wiring part that is on a space separated from the metal substrate. The base insulating layer of the aerial wiring part is formed to be thinner than that of the normal wiring part. This configuration reduces a rigidity contribution ratio of the wiring part.
Abstract:
A slider and microactuator elements are arranged on a gimbal portion of a flexure. A conducting member includes tongue conductive circuit portions, and unsupported conductive circuit portions which do not overlap with a metal base. The unsupported conductive circuit portions are disposed between arms of an outrigger portion. Bendable portions for reducing bending stiffness are formed in the unsupported conductive circuit portions, respectively. End portions of the microactuator elements are secured to supporting portions of a tongue, respectively. Each of bridge members is provided between the corresponding supporting portion of the tongue and the corresponding unsupported conductive circuit portion.
Abstract:
A shift drive unit includes a shift drive gear, and a shift arm which meshes with the shift drive gear. A throttle drive unit includes a throttle drive gear, a slide member, and a throttle arm. When a control lever is pivoted in a shift operation range, rotation of the shift drive gear is transmitted to the shift arm. When the control lever is pivoted in a throttle operation range, rotation of the throttle drive gear is transmitted to the throttle arm via the slide member, and a throttle cable is thereby operated. A friction mechanism includes a brake shoe and a disc spring unit. When the control lever is pivoted in the throttle operation range, the brake shoe contacts a brake portion.