Abstract:
A system manages information exchanges between components of the system so that information is provided in a format expected by each particular component. In a specific implementation, a translation service provider intercepts information exchanges between client and data sources or data services and translates of converts software identifiers (e.g., UUIDs or GUIDs) as needed so that the client or data source can properly process the data. For example, a client may use GUIDs in a first format, and when information is requested is presented using a GUID in a second format, different from the first, the translation service provider translates a GUID to the first format. The translation service provider may be transparent to the other components of the system.
Abstract:
In one embodiment, file attributes of a desired file are sent along with the URL to the storing server and the attributes are used for subsequent retrieval of the file. Attributes, such as the text or title of the file, the language of the file, the creator of the file, etc, can all be added to the file in the form of metadata. Files that are recorded without metadata can have metadata attached thereto and can be retrieved using the metadata. The URL initially carries the metadata to the server and the server then both uses the metadata for indexing purposes and, if desired, adds the metadata to the file for storage with the file. In one embodiment, the files are media files used in an IVR system.
Abstract:
A power converter for operating with an alternate current power source, including a storage capacitive means and a transformer, said storage capacitive means being adapted for power factor correction, said transformer including an input for connecting to an alternating current power source and at least a first output and a second output respectively for connecting to said storage capacitive means and the load, said transformer including input windings, first output windings and second output windings which are respectively connected to said input, said first and second outputs wherein said transformer and said storage capacitive means being adapted that the voltage across said storage capacitive means being related to the voltage of said first output of said transformer.
Abstract:
A method and apparatus for semiconductor processing is disclosed. In one embodiment, a method of transporting a wafer within a cluster tool, comprises placing the wafer into a first segment of a vacuum enclosure, the vacuum enclosure being attached to a processing chamber and a factory interface. The wafer is transported to a second segment of the vacuum enclosure using a vertical transport mechanism, wherein the second segment is above or below the first segment.
Abstract:
A magnetic core is made of a composite magnetic material having a relative permeability of between 1 and 29 at a frequency range from 20 kHz to 2.5 MHz. The composite magnetic material consists of cobalt and nickel particles having an average diameter in the range of 1 to 100 micrometers, and a polymer base binding the particles to form a core.
Abstract:
A wafer handling apparatus and method includes a wafer carrier station for supporting a wafer carrier, such as an enclosed pod, that holds one or more wafers. A grounded interface panel is provided between the carrier station and a clean testing or processing environment. A z-movement mechanism moves the carrier station and the wafer carrier in a z-direction. A door opening mechanism removes a door from said carrier through a door opening in the interface panel. A handler mechanism includes a wafer holding device, such as a flat end effector, that moves into the wafer carrier at a separate access opening to load or unload a wafer to or from the wafer carrier. Wafer carriers holding different amounts of wafers can be used with no major structural changes to the apparatus.
Abstract:
An improved apparatus for CVD processing is described wherein a wafer mounted on a vertically movable susceptor beneath a gas outlet or showerhead is raised into contact with a shield ring which normally rests on a ring support in the chamber. The shield ring engages the frontside edge of the wafer, lifting the shield ring off its support, when the susceptor and the wafer are raised to a deposition position in the chamber. The shield ring, by engaging the frontside edge of the wafer, shields the edge of the top surface of the wafer, as well as the end edge and the backside of the wafer, during the deposition. Matching tapered edges, respectively, on the susceptor and the shield ring permit alignment of the shield ring with respect to the susceptor, and alignment of the wafer to the susceptor and the shield ring. Alignment means are also disclosed to circularly align the shield ring to its support in the chamber. Multi-unit shield rings permit the use of wider shield rings and prevent cracking of the shield ring due to thermal stresses caused by temperature differences near and away from the wafer during processing. These shield rings may also have tapered edges to ensure alignment of the rings with respect to each other.
Abstract:
A method and apparatus for mapping the edge and other characteristics of a wafer. A method for mapping the edge of a wafer includes steps of providing a sensor device over a surface of a wafer on a testing chuck. A beam of electromagnetic energy emitted by the sensor device is reflected from the surface of the wafer and its intensity is measured by the sensor device. The sensor device is focussed and is then positioned at the edge of the wafer by measuring the intensity of the reflected beam as the sensor device is moved. A changed intensity signifies that the sensor device is located at the edge of the wafer. The wafer is incrementally rotated and the intensity of the reflected beam is measured at multiple locations on the edge of the wafer to provide datapoints used in the edge mapping. The height of the wafer is mapped by moving the sensor device in a z direction perpendicular to the surface of the wafer. A focal distance is found where the reflected beam is at a maximum intensity. Multiple focal distances taken from different locations on the wafer are compared to map the height of the wafer. The reflectivity of the wafer is also detected at the focal distance.
Abstract:
A method and apparatus for handling wafers. A wafer pick moves along a horizontal x-axis to unload a wafer from a cassette and position the wafer over a chuck. The chuck moves upwardly along a z-axis perpendicular to the surface of the wafer and lifts the wafer off the pick. The pick retracts through a slot in the chuck and a test probe moves along the x-axis to position itself over the wafer and chuck with reference to a calculated wafer center. The chuck then moves upwardly to engage the surface of the wafer with the probe. Wafer characteristics are tested at several test points located on a circle on the surface of the wafer by repeatedly lowering the chuck, rotating the chuck by a small amount, and raising the chuck to engage the wafer with the probe. The probe is then positioned to test another circle of points.
Abstract:
A method and apparatus for finding wafer index marks and centers. A wafer having a flat or notch along its edge is placed on a rotatable platform so that a portion of the wafer's edge is positioned within a sensor assembly. The wafer is rotated, and the sensor reads the distance from the center of rotation to the edge of the wafer. This distance is measured at several angles of the wafer and the data is stored in a digital computer as a series of datapoints including an angle and a distance. A computer-implemented process calculates various geometries concerning the wafer including the location of the index mark and the center of the wafer.